S1601-2-4 Biomechanical analysis system of upper limb during pitching using body-mounted sensor

2009 ◽  
Vol 2009.5 (0) ◽  
pp. 185-186
Author(s):  
Hideharu KODA ◽  
Koichi SAGAWA ◽  
Kouta KUROSHIMA ◽  
Toshiaki TSUKAMOTO ◽  
Kazutaka URITA ◽  
...  
2012 ◽  
Vol 28 (1) ◽  
pp. 93-98 ◽  
Author(s):  
M. M. Reid ◽  
Amity C. Campbell ◽  
B. C. Elliott

Tennis stroke mechanics have attracted considerable biomechanical analysis, yet current filtering practice may lead to erroneous reporting of data near the impact of racket and ball. This research had three aims: (1) to identify the best method of estimating the displacement and velocity of the racket at impact during the tennis serve, (2) to demonstrate the effect of different methods on upper limb kinematics and kinetics and (3) to report the effect of increased noise on the most appropriate treatment method. The tennis serves of one tennis player, fit with upper limb and racket retro-reflective markers, were captured with a Vicon motion analysis system recording at 500 Hz. The raw racket tip marker displacement and velocity were used as criterion data to compare three different endpoint treatments and two different filters. The 2nd-order polynomial proved to be the least erroneous extrapolation technique and the quintic spline filter was the most appropriate filter. The previously performed “smoothing through impact” method, using a quintic spline filter, underestimated the racket velocity (9.1%) at the time of impact. The polynomial extrapolation method remained effective when noise was added to the marker trajectories.


Sensors ◽  
2010 ◽  
Vol 10 (12) ◽  
pp. 10733-10751 ◽  
Author(s):  
Rodrigo Pérez ◽  
Úrsula Costa ◽  
Marc Torrent ◽  
Javier Solana ◽  
Eloy Opisso ◽  
...  

2008 ◽  
Vol 24 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Yong “Tai” Wang ◽  
Konstantinos Dino Vrongistinos ◽  
Dali Xu

The purposes of this study were to examine the consistency of wheelchair athletes’ upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.


2013 ◽  
Vol 321-324 ◽  
pp. 684-687 ◽  
Author(s):  
Hai Yan Song ◽  
Jian Guo Zhang ◽  
Fang Wang

The measurement and analysis of human motion during the Activities of Daily Living (ADLs) is widely used in rehabilitation, ergonomics, diagnosis, and bionics etc. By using American PolhemusTMelectromagnetic tracking system, the human upper limb motions of 6 objects performing 12 basic actions of ADLs were measured. Then the joint angle ranges of human upper limb were obtained by upper limb motion analysis system developed by ourselves. The results can provide reference for complete, standardized Chinese adult human upper limb kinematics parameters.


2007 ◽  
Vol 353-358 ◽  
pp. 2179-2182 ◽  
Author(s):  
Jae Ok Lee ◽  
Young Shin Lee ◽  
Se Hoon Lee ◽  
Young Jin Choi ◽  
Soung Ha Park

The foot plays an important role in supporting the body and keeping body balance. An abnormal walking habit breaks the balance of the human body as well as the function of the foot. The foot orthotics which is designed to consider biomechanics effectively distributes the load of the human body on the sole of the foot. In this paper, gait analysis is performed for subjects wearing the orthotics. In this study, three male subjects were selected. The experimental apparatus consists of a plantar pressure analysis system and digital EMG system. The gait characteristics are simulated by ADAMS/LifeMOD. The COP (Center of Pressure), EMG and ground reaction force were investigated. As a result of gait analysis, the path of COP was improved and muscle activities were decreased with orthotics on the abnormal walking subjects.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 155
Author(s):  
Cristian Romagnoli ◽  
Vincenzo Bonaiuto ◽  
Giorgio Gatta ◽  
Naomi Romagnoli ◽  
Anas Alashram ◽  
...  

Figure roller skating is a discipline composed of various movements which involve jumps, artistic figures and spins in a seamless program which has both technical and shapely difficult. A biomechanical analysis of a double salchow was performed using a 2D video analysis of one European and in two Italian roller skaters. On average, the high level (HL) roller skater showed a horizontal velocity of the center of mass higher than the average, especially in the prop stage, whereas the medium level (ML) and low level (LL) athletes reduced their velocity significantly. The spin angular velocity of the ML and LL skaters was always higher than of the HL. This phenomenon would seem to be a compensatory strategy for a lower jump height, with a reduced trunk-thigh angle and less thigh lever arm (coxo-femur/knee joints) during the take-off and landing phases of the double salchow jump.


Sign in / Sign up

Export Citation Format

Share Document