Notch sensitivity in pure nickel determined by two mechanisms of hydrogen-assisted crack propagation: sub-/main-crack coalescence versus main-crack growth

2019 ◽  
Vol 2019 (0) ◽  
pp. OS0110
Author(s):  
Tingshu CHEN ◽  
He LIU ◽  
Kejing ZHANG ◽  
Motomichi KOYAMA ◽  
Shigeru HAMADA ◽  
...  
2010 ◽  
Vol 452-453 ◽  
pp. 753-756
Author(s):  
Alisa Boonyapookana ◽  
Yoshiharu Mutoh ◽  
Kohsoku Nagata

In-situ observation of fatigue crack growth of epoxy resin composite reinforced with crushed silica particle was carried out. The test was performed under constant ΔK condition. Based on the results, the crack propagation mechanism was discussed. The in-situ observation revealed that in front of the main crack, a microcrack was nucleated at the interface of matrix/particle and then coalesced with the main crack. At the same time, new microcracking occurred ahead of the crack tip and the crack propagated by repeating these processes. Retardation of crack growth rate was found to result from crack bridging induced by microcracking at silica particles and crack deflection.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing Sun ◽  
Shun Liu ◽  
Sheng Zeng ◽  
Shanyong Wang ◽  
Shaoping Wang

AbstractTo investigate the influence of the fissure morphology on the dynamic mechanical properties of the rock and the crack propagation, a drop hammer impact test device was used to conduct impact failure tests on sandstones with different fissure numbers and fissure dips, simultaneously recorded the crack growth after each impact. The box fractal dimension is used to quantitatively analyze the dynamic change in the sandstone cracks and a fractal model of crack growth over time is established based on fractal theory. The results demonstrate that under impact test conditions of the same mass and different heights, the energy absorbed by sandstone accounts for about 26.7% of the gravitational potential energy. But at the same height and different mass, the energy absorbed by the sandstone accounts for about 68.6% of the total energy. As the fissure dip increases and the number of fissures increases, the dynamic peak stress and dynamic elastic modulus of the fractured sandstone gradually decrease. The fractal dimensions of crack evolution tend to increase with time as a whole and assume as a parabolic. Except for one fissure, 60° and 90° specimens, with the extension of time, the increase rate of fractal dimension is decreasing correspondingly.


2021 ◽  
pp. 014459872110153
Author(s):  
Qingsong Li ◽  
Jinlei Fu ◽  
Xianwei Heng ◽  
Xiaoqian Xu ◽  
Shu Ma

To study crack propagation around the fracture hole in the coal body induced by high-pressure CO2 gas produced by CO2 phase transition fracturing, the mechanism of permeability enhancement of fractured coal induced by liquid CO2 phase transition fracturing was studied from two aspects, the process of coal gas displacement by competitive adsorption and physical characteristics of fractured coal induced by phase transition. Crack propagation pattern in coal under different lateral coefficients was explored by using discrete-element numerical simulation software. Distribution characteristics of hoop stress of fractured coal were analyzed through theoretical calculation. The results show that: (1) Micro-cracks in damaged coal body generated during phase transition process are mainly crack_tension type, which are formed by the composite action of tension and compression. The crack propagation is the result of the continuous release of compressive stress from concentrated area to the surrounding units. Micro-cracks are radially distributed in a pattern of “flame”. (2) The main crack formed above the fracture hole grows in the direction of vertical minimum initial stress, and the main crack formed below the fracture hole develops in the direction of horizontal initial stress. As the lateral compression coefficient increases, the extension distance of the second crack will not change after reducing to a certain length. (3) As the distance from the fracture hole increases, the peak compression loaded at the monitoring point decays, and the loop stress in the cracked coal is distributed in a pattern of “peanut”. It provides practical methods and ideas for studying the macroscopic and microscopic development of cracks, as well as theoretical support for the on-site hole layout.


1998 ◽  
Vol 554 ◽  
Author(s):  
J. A. Horton ◽  
J. L. Wright ◽  
J. H. Schneibel

AbstractThe fracture behavior of a Zr-based bulk amorphous alloy, Zr-10 Al-5 Ti-17.9 Cu-14.6Ni (at.%), was examined by transmission electron microscopy (TEM) and x-ray diffraction forany evidence of crystallization preceding crack propagation. No evidence for crystallizationwas found in shear bands in compression specimens or at the fracture surface in tensile specimens.In- situ TEM deformation experiments were performed to more closely examine actualcrack tip regions. During the in-situ deformation experiment, controlled crack growth occurredto the point where the specimen was approximately 20 μm thick at which point uncontrolledcrack growth occurred. No evidence of any crystallization was found at the crack tips or thecrack flanks. Subsequent scanning microscope examination showed that the uncontrolledcrack growth region exhibited ridges and veins that appeared to have resulted from melting. Performing the deformations, both bulk and in-situ TEM, at liquid nitrogen temperatures (LN2) resulted in an increase in the amount of controlled crack growth. The surface roughness of the bulk regions fractured at LN2 temperatures corresponded with the roughness of the crack propagation observed during the in-situ TEM experiment, suggesting that the smooth-appearing room temperature fracture surfaces may also be a result of localized melting.


2004 ◽  
Vol 126 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Yanyao Jiang ◽  
Miaolin Feng

Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Ding ◽  
Lu-sheng Wang ◽  
Kun Song ◽  
Bo Liu ◽  
Xia Huang

The crack propagation process in single-crystal aluminum plate (SCAP) with central cracks under tensile load was simulated by molecular dynamics method. Further, the effects of model size, crack length, temperature, and strain rate on strength of SCAP and crack growth were comprehensively investigated. The results showed that, with the increase of the model size, crack length, and strain rate, the plastic yield point of SCAP occurred in advance, the limit stress of plastic yield decreased, and the plastic deformability of material increased, but the temperature had less effect and sensitivity on the strength and crack propagation of SCAP. The model size affected the plastic deformation and crack growth of the material. Specifically, at small scale, the plastic deformation and crack propagation in SCAP are mainly affected through dislocation multiplication and slip. However, the plastic deformation and crack propagation are obviously affected by dislocation multiplication and twinning in larger scale.


2017 ◽  
Vol 13 (2) ◽  
pp. 262-283 ◽  
Author(s):  
Vladimir Kobelev

Purpose The purpose of this paper is to propose the new dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach. The anticipated unified propagation function describes the infinitesimal crack-length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification functions with different number of fitting parameters are proposed. On one hand, the closed-form analytical solutions facilitate the universal fitting of the constants of the fatigue law over all stages of fatigue. On the other hand, the closed-form solution eases the application of the fatigue law, because the solution of nonlinear differential equation turns out to be dispensable. The main advantage of the proposed functions is the possibility of having closed-form analytical solutions for the unified crack growth law. Moreover, the mean stress dependence is the immediate consequence of the proposed law. The corresponding formulas for crack length over the number of cycles are derived. Design/methodology/approach In this paper, the method of representation of crack propagation functions through appropriate elementary functions is employed. The choice of the elementary functions is motivated by the phenomenological data and covers a broad region of possible parameters. With the introduced crack propagation functions, differential equations describing the crack propagation are solved rigorously. Findings The resulting closed-form solutions allow the evaluation of crack propagation histories on one hand, and the effects of stress ratio on crack propagation on the other hand. The explicit formulas for crack length over the number of cycles are derived. Research limitations/implications In this paper, linear fracture mechanics approach is assumed. Practical implications Shortening of evaluation time for fatigue crack growth. Simplification of the computer codes due to the elimination of solution of differential equation. Standardization of experiments for crack growth. Originality/value This paper introduces the closed-form analytical expression for crack length over number of cycles. The new function that expresses the damage growth per cycle is also introduced. This function allows closed-form analytical solution for crack length. The solution expresses the number of cycles to failure as the function of the initial size of the crack and eliminates the solution of the nonlinear ordinary differential equation of the first order. The different common expressions, which account for the influence of the stress ratio, are immediately applicable.


Author(s):  
João Ferreira ◽  
José A. F. O. Correia ◽  
Grzegorz Lesiuk ◽  
Sergio Blasón González ◽  
Maria Cristina R. Gonzalez ◽  
...  

Pressure vessels and piping are commonly subjected to plastic deformation during manufacturing or installation. This pre-deformation history, usually called pre-strain, may have a significant influence on the resistance against fatigue crack growth of the material. Several studies have been performed to investigate the pre-strain effects on the pure mode I fatigue crack propagation, but less on mixed-mode (I+II) fatigue crack propagation conditions. The present study aims at investigating the effect of tensile plastic pre-strain on fatigue crack growth behavior (da/dN vs. ΔK) of the P355NL1 pressure vessel steel. For that purpose, fatigue crack propagation tests were conducted on specimens with two distinct degrees of pre-strain: 0% and 6%, under mixed mode (I+II) conditions using CTS specimens. Moreover, for comparison purposes, CT specimens were tested under pure mode I conditions for pre-strains of 0% and 3%. Contrary to the majority of previous studies, that applied plastic deformation directly on the machined specimen, in this work the pre-straining operation was carried out prior to the machining of the specimens with the objective to minimize residual stress effects and distortions. Results revealed that, for the P355NL1 steel, the tensile pre-strain increased fatigue crack initiation angle and reduced fatigue crack growth rates in the Paris region for mixed mode conditions. The pre-straining procedure had a clear impact on the Paris law constants, increasing the coefficient and decreasing the exponent. In the low ΔK region, results indicate that pre-strain causes a decrease in ΔKth.


Sign in / Sign up

Export Citation Format

Share Document