820 Investigation of Deposition Process and Aluminum Oxide Film Structure Formed by Plasma Electrolytic Oxidation

2013 ◽  
Vol 2013.21 (0) ◽  
pp. _820-1_-_820-3_
Author(s):  
Teruki HIRONAGA ◽  
Toshiaki YASUI ◽  
Masahiro FUKUMOTO
2021 ◽  
Vol 60 (1) ◽  
pp. 678-690
Author(s):  
Nur Athirah Sukrey ◽  
Muhammad Rizwan ◽  
Abd Razak Bushroa ◽  
Siti Zuliana Salleh ◽  
Wan Jefrey Basirun

Abstract In this research, the growth of bioglass (BG) (45S5) incorporated oxide layer via plasma electrolytic oxidation (PEO) method was studied with respect to different sodium hydroxide (NaOH) concentrations (0.1, 0.3, 0.5, and 0.7 M). The voltage response during the deposition process was highly dependent on the electrolyte concentration. Large sparks were recorded at the lowest electrolyte concentration. The result also showed that the increment of electrolyte concentration improved the thickness and mechanical properties of BG-coated pure titanium (TI) surfaces via the PEO process. However, the morphological investigation showed that the coating formation and the uniformity of coating distribution are dependent on the optimum concentration of the electrolyte. This study demonstrates the feasibility of the PEO method in producing a uniform bio-functional coating for biomedical applications.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5118
Author(s):  
Alexander Poznyak ◽  
Gerhard Knörnschild ◽  
Anatoly Karoza ◽  
Małgorzata Norek ◽  
Andrei Pligovka

The influence of arsenazo-I additive on electrochemical anodizing of pure aluminum foil in malonic acid was studied. Aluminum dissolution increased with increasing arsenazo-I concentration. The addition of arsenazo-I also led to an increase in the volume expansion factor up to 2.3 due to the incorporation of organic compounds and an increased number of hydroxyl groups in the porous aluminum oxide film. At a current density of 15 mA·cm–2 and an arsenazo-I concentration 3.5 g·L–1, the carbon content in the anodic alumina of 49 at. % was achieved. An increase in the current density and concentration of arsenazo-I caused the formation of an arsenic-containing compound with the formula Na1,5Al2(OH)4,5(AsO4)3·7H2O in the porous aluminum oxide film phase. These film modifications cause a higher number of defects and, thus, increase the ionic conductivity, leading to a reduced electric field in galvanostatic anodizing tests. A self-adjusting growth mechanism, which leads to a higher degree of self-ordering in the arsenazo-free electrolyte, is not operative under the same conditions when arsenazo-I is added. Instead, a dielectric breakdown mechanism was observed, which caused the disordered porous aluminum oxide film structure.


2016 ◽  
Vol 48 (7) ◽  
pp. 654-659 ◽  
Author(s):  
Victor Aurel Andrei ◽  
Elisabeta Coaca ◽  
Maria Mihalache ◽  
Viorel Malinovschi ◽  
Mariana Patrascu-Minca

2015 ◽  
Vol 53 (8) ◽  
pp. 535-540 ◽  
Author(s):  
Young Gun Ko ◽  
Dong Hyuk Shin ◽  
Hae Woong Yang ◽  
Yeon Sung Kim ◽  
Joo Hyun Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document