scholarly journals Effect of thermal radiation on transient combustion of a fuel droplet with finite rate of chemical reaction.

1991 ◽  
Vol 57 (536) ◽  
pp. 1485-1490 ◽  
Author(s):  
Takeo SAITOH ◽  
Koji YAMAZAKI ◽  
Raymond VISKANTA
1993 ◽  
Vol 7 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Takeo Saitoh ◽  
Kouji Yamazaki ◽  
Raymond Viskanta

Author(s):  
A. Shahid ◽  
M. Ali Abbas ◽  
H.L. Huang ◽  
S.R. Mishra ◽  
M.M. Bhatti

The present study analyses the dissipative influence into an unsteady electrically conducting fluid flow embedded in a pervious medium over a shrinkable sheet. The behavior of thermal radiation and chemical reactions are also contemplated. The governing partial differential equations are reformed to ordinary differential equations by operating similarity transformations. The numerical outcomes for the arising non-linear boundary value problem are determined by implementing the Successive linearization method (SLM) via Matlab software. The velocity, temperature, and concentration magnitudes for distant values of the governing parametric quantities are conferred, and their conduct is debated via graphical curves. The surface drag coefficient increases, whereas the local Nusselt number and Sherwood number decreases for enhancing unsteadiness parameter across suction parameter. Moreover, the magnetic and suction parameters accelerate velocity magnitudes while by raising porosity parameter, velocity decelerates. Larger numeric of thermal radiation parameter and Eckert number accelerates the temperature profile while by enhancing Prandtl number it decelerates. Schmidt number and chemical reaction parameters slowdowns the concentration distribution, and the chemical reaction parameter influences on the point of chemical reaction that benefits the interface mass transfer. It is expected that the current achieved results will furnish fruitful knowledge in industrious utilities.


Author(s):  
Pooja P Humane ◽  
Vishwambhar S Patil ◽  
Amar B Patil

The flow of Casson–Williamson fluid on a stretching surface is considered for the study. The movement of fluid is examined under the effect of external magnetic field, thermal radiation and chemical consequences. The model is formed by considering all the physical aspects responsible for the physical mechanism. The formed mathematical model (partial differential equation) is numerically solved after transforming it into an ordinary one (ordinary differential equation) via similarity invariants. The physical mechanism for velocity, temperature, and concentration is examined through the associated parameters like radiation index, Williamson and Casson parameter, suction/injection parameter, porosity index, and chemical reaction parameter.


2018 ◽  
Vol 387 ◽  
pp. 332-342
Author(s):  
R. Suresh Babu ◽  
B. Rushi Kumar ◽  
Oluwole Daniel Makinde

This article investigates the magnetohydrodynamic mixed convective heat, and mass transfer flow of an incompressible, viscous, Boussinesq, electrically conducting fluid from a vertical plate in a sparsely packed porous medium in the presence of thermal radiation and an nth order homogeneous chemical reaction between the fluid and the diffusing species numerically. In this investigation, the fluid and porous properties like thermal and solutal diffusivity, permeability and porosity are all considered to be vary. The governing non-linear PDE's for the fluid flow are derived and transformed into a system of ODE's using an appropriate similarity transformation. The resultant equations are solved numerically using shooting technique and Runge-Kutta integral scheme with the help of Newton-Raphson algorithm in order to know the characteristics of the fluid for various non-dimensional parameters which are controlling the physical system graphically. The results of the numerical scheme are validated and a numerical comparison has been made with the available literature in the absence of some parameters and found that in good agreement. Nomenclature


Sign in / Sign up

Export Citation Format

Share Document