scholarly journals Control of flexible robotic arms. 3rd report, Optimal control method of suppressing vibrations and sensitivity analysis for a three-degrees-of-freedom system.

1990 ◽  
Vol 56 (529) ◽  
pp. 2446-2453
Author(s):  
Atsushi ARAKAWA ◽  
Toshio FUKUDA
Author(s):  
Nicola Dal Bianco ◽  
Roberto Lot ◽  
Marco Gadola

In this work, optimal control theory is applied to minimum lap time simulation of a GP2 car, using a multibody car model with enhanced load transfer dynamics. The mathematical multibody model is formulated with use of the symbolic algebra software MBSymba and it comprises 14 degrees of freedom, including full chassis motion, suspension travels and wheel spins. The kinematics of the suspension is exhaustively analysed and the impact of tyre longitudinal and lateral forces in determining vehicle trim is demonstrated. An indirect optimal control method is then used to solve the minimum lap time problem. Simulation outcomes are compared with experimental data acquired during a qualifying lap at Montmeló circuit (Barcelona) in the 2012 GP2 season. Results demonstrate the reliability of the model, suggesting it can be used to optimise car settings (such as gearing and aerodynamic setup) before executing track tests.


Author(s):  
Jacob Siefert ◽  
Perry Y. Li

Abstract In recent years several novel hydraulic architectures have been proposed with the intention of significantly increasing system efficiency. Two of these architectures, Steigerung der Energieefflzienz in der Arbeitshydraulik mobiler Arbeitsmaschinen (STEAM), and the Hybrid Hydraulic-Electric Architecture (HHEA), use a system of multiple common pressure rails (CPRs) to serve the multiple degrees-of-freedom of the machine. The key difference is that STEAM throttles hydraulic power from these rails while HHEA combines electric and hydraulic power to meet actuator demands. As a throttle-less architecture, HHEA is expected to save more energy than STEAM at the expense of added complexity. Therefore, it is useful to quantify this additional energy saving. Both systems have discrete operational choices corresponding to how the CPRs are utilized for each actuator. It is necessary to determine optimal operation for each of these architectures for analysis and fair comparison. Techniques for optimal operation of the HHEA have been developed previously from the Langrange multiplier method. Applying the same optimal control method to STEAM encountered some technical challenge leading to the optimal control algorithm not being able to satisfy certain constraints. The issue is analyzed and solved by adding noise to the optimization. Using this proposed algorithm, case studies are performed to compare the energy-saving potentials of STEAM and HHEA for two sizes of excavators and a wheel-loader performing representative duty cycles. The baseline is a standard load-sensing architecture. Results show that STEAM and HHEA can reduce energy consumption between 35–65% and 50–80% respectively.


Author(s):  
Xing Xu ◽  
Minglei Li ◽  
Feng Wang ◽  
Ju Xie ◽  
Xiaohan Wu ◽  
...  

A human-like trajectory could give a safe and comfortable feeling for the occupants in an autonomous vehicle especially in corners. The research of this paper focuses on planning a human-like trajectory along a section road on a test track using optimal control method that could reflect natural driving behaviour considering the sense of natural and comfortable for the passengers, which could improve the acceptability of driverless vehicles in the future. A mass point vehicle dynamic model is modelled in the curvilinear coordinate system, then an optimal trajectory is generated by using an optimal control method. The optimal control problem is formulated and then solved by using the Matlab tool GPOPS-II. Trials are carried out on a test track, and the tested data are collected and processed, then the trajectory data in different corners are obtained. Different TLCs calculations are derived and applied to different track sections. After that, the human driver’s trajectories and the optimal line are compared to see the correlation using TLC methods. The results show that the optimal trajectory shows a similar trend with human’s trajectories to some extent when driving through a corner although it is not so perfectly aligned with the tested trajectories, which could conform with people’s driving intuition and improve the occupants’ comfort when driving in a corner. This could improve the acceptability of AVs in the automotive market in the future. The driver tends to move to the outside of the lane gradually after passing the apex when driving in corners on the road with hard-lines on both sides.


Author(s):  
Jiaying Zhang ◽  
Colin R. McInnes

Several new methods are proposed to reconfigure smart structures with embedded computing, sensors and actuators. These methods are based on heteroclinic connections between equal-energy unstable equilibria in an idealised spring-mass smart structure model. Transitions between equal-energy unstable (but actively controlled) equilibria are considered since in an ideal model zero net energy input is required, compared to transitions between stable equilibria across a potential barrier. Dynamical system theory is used firstly to identify sets of equal-energy unstable configurations in the model, and then to connect them through heteroclinic connection in the phase space numerically. However, it is difficult to obtain such heteroclinic connections numerically in complex dynamical systems, so an optimal control method is investigated to seek transitions between unstable equilibria, which approximate the ideal heteroclinic connection. The optimal control method is verified to be effective through comparison with the results of the exact heteroclinic connection. In addition, we explore the use of polynomials of varying order to approximate the heteroclinic connection, and then develop an inverse method to control the dynamics of the system to track the polynomial reference trajectory. It is found that high order polynomials can provide a good approximation to true heteroclinic connections and provide an efficient means of generating such trajectories. The polynomial method is envisaged as being computationally efficient to form the basis for real-time reconfiguration of real, complex smart structures with embedded computing, sensors and actuators.


2011 ◽  
Vol 467-469 ◽  
pp. 1066-1071
Author(s):  
Zhong Xin Li ◽  
Ji Wei Guo ◽  
Ming Hong Gao ◽  
Hong Jiang

Taking the full-vehicle eight-freedom dynamic model of a type of bus as the simulation object , a new optimal control method is introduced. This method is based on the genetic algorithm, and the full-vehicle optimal control model is built in the MatLab. The weight matrix of the optimal control is optimized through the genetic algorithm; then the outcome is compared with the artificially-set optimal control simulation, which shows that the genetic-algorithm based optimal control presents better performance, thereby creating a smoother ride and improving the steering stability of the vehicle.


Sign in / Sign up

Export Citation Format

Share Document