scholarly journals Chaotic Behavior in Gear System. Adaptation of Bifurcation Diagrams and Method of Statistical Mechanics.

1995 ◽  
Vol 61 (587) ◽  
pp. 3108-3115
Author(s):  
Keijin Sato ◽  
Sumio Yamamoto ◽  
Kazutaka Yokota ◽  
Toshihiro Aoki ◽  
Shu Karube
2018 ◽  
Vol 28 (09) ◽  
pp. 1850113 ◽  
Author(s):  
Maysam Fathizadeh ◽  
Sajjad Taghvaei ◽  
Hossein Mohammadi

Human walking is an action with low energy consumption. Passive walking models (PWMs) can present this intrinsic characteristic. Simplicity in the biped helps to decrease the energy loss of the system. On the other hand, sufficient parts should be considered to increase the similarity of the model’s behavior to the original action. In this paper, the dynamic model for passive walking biped with unidirectional fixed flat soles of the feet is presented, which consists of two inverted pendulums with L-shaped bodies. This model can capture the effects of sole foot in walking. By adding the sole foot, the number of phases of a gait increases to two. The nonlinear dynamic models for each phase and the transition rules are determined, and the stable and unstable periodic motions are calculated. The stability situations are obtained for different conditions of walking. Finally, the bifurcation diagrams are presented for studying the effects of the sole foot. Poincaré section, Lyapunov exponents, and bifurcation diagrams are used to analyze stability and chaotic behavior. Simulation results indicate that the sole foot has such a significant impression on the dynamic behavior of the system that it should be considered in the simple PWMs.


1997 ◽  
Vol 07 (04) ◽  
pp. 945-949
Author(s):  
Sang Wook Kim ◽  
Hai-Woong Lee

The classical dynamics of a damped quartic oscillator driven by a sinusoidal force is investigated, with particular attention to the effects that arise when the motion of the oscillator becomes relativistic. Bifurcation diagrams constructed numerically indicate that, as relativistic effects become strong, chaotic behavior exhibited by the oscillator in the nonrelativistic limit at large force amplitude is replaced by a period-1 regular motion. At relativistic energies, therefore, a transition from chaos to a regular motion occurs as the force amplitude is increased beyond a critical value. The transition is seen to occur abruptly with a slight increase of the force amplitude from below to above the critical value. The sudden destruction of the chaotic attractor is probably triggered by the mechanism of crisis.


2013 ◽  
Vol 444-445 ◽  
pp. 791-795
Author(s):  
Yi Xiang Geng ◽  
Han Ze Liu

The subharmonic and chaotic behavior of a two end-fixed fluid conveying pipe whose base is subjected to a harmonic excitation are investigated. Melnikov method is applied for the system, and Melnikov criterions for subharmonic and homoclinic bifurcations are obtained analytically. The numerical simulations (including bifurcation diagrams, maximal Lyapunov exponents, phase portraits and Poincare map) confirm the analytical predictions and exhibit the complicated dynamical behaviors.


1992 ◽  
Vol 02 (03) ◽  
pp. 645-657 ◽  
Author(s):  
M. DE SOUSA VIEIRA ◽  
P. KHOURY ◽  
A. J. LICHTENBERG ◽  
M. A. LIEBERMAN ◽  
W. WONCHOBA ◽  
...  

We study self-synchronization of digital phase-locked loops (DPLL's) and the chaotic synchronization of DPLL's in a communication system which consists of three or more coupled DPLL's. Triangular wave signals, convenient for experiments, are employed. Numerical and experimental studies of two loops are in good agreement, giving bifurcation diagrams that show quasiperiodic, locked, and chaotic behavior. The approach to chaos does not show the full bifurcation sequence of sinusoidal signals. For studying synchronization to a chaotic signal, the chaotic carrier is generated in a subsystem of two or more self-synchronized DPLL's where one of the loops is stable and the other is unstable. The receiver consists of a stable loop. We verified numerically and experimentally that the receiver may synchronize with the transmitter if the stable loop in the transmitter and receiver are nearly identical and the synchronization degrades with noise and parameter variation. We studied the phase space where synchronization occurs, and quantify the deviation from synchronization using the concept of mutual information.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
D. O. Tcheutchoua Fossi ◽  
P. Woafo

The purpose of this paper is to study the dynamics of an electromechanical system consisting of a torsion-bar or two mechanical pumps activated by an electromotor. Oscillatory solutions showing the jump and hysteresis phenomena are obtained using the harmonic balance method and direct numerical simulation. Chaotic behavior is presented via the bifurcation diagrams and corresponding Lyapunov exponent. Some implications of the results on the applications of the devices are discussed.


1994 ◽  
Vol 04 (03) ◽  
pp. 715-726 ◽  
Author(s):  
MARIA DE SOUSA VIEIRA ◽  
ALLAN J. LICHTENBERG ◽  
MICHAEL A. LIEBERMAN

We investigate numerically and analytically the nonlinear dynamics of a system consisting of two self-synchronizing pulse-coupled nonlinear oscillators with delay. The particular system considered consists of connected digital phase-locked loops. We find mapping equations that govern the system and determine the synchronization properties. We study the bifurcation diagrams, which show regions of periodic, quasiperiodic and chaotic behavior, with unusual bifurcation diagrams, depending on the delay. We show that depending on the parameter that is varied, the delay will have a synchronizing or desynchronizing effect on the locked state. The stability of the system is studied by determining the Liapunov exponents, indicating marked differences compared to coupled systems without delay.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Hengguo Yu ◽  
Min Zhao

On the basis of the theories and methods of ecology and ordinary differential equation, a seasonally perturbed prey-predator system with the Beddington-DeAngelis functional response is studied analytically and numerically. Mathematical theoretical works have been pursuing the investigation of uniformly persistent, which depicts the threshold expression of some critical parameters. Numerical analysis indicates that the seasonality has a strong effect on the dynamical complexity and species biomass using bifurcation diagrams and Poincaré sections. The results show that the seasonality in three different parameters can give rise to rich and complex dynamical behaviors. In addition, the largest Lyapunov exponents are computed. This computation further confirms the existence of chaotic behavior and the accuracy of numerical simulation. All these results are expected to be of use in the study of the dynamic complexity of ecosystems.


1987 ◽  
Vol 48 (3-4) ◽  
pp. 539-559 ◽  
Author(s):  
Roberto Livi ◽  
Marco Pettini ◽  
Stefano Ruffo ◽  
Angelo Vulpiani

Author(s):  
Rafael H. Avanço ◽  
Helio A. Navarro ◽  
Airton Nabarrete ◽  
José M. Balthazar ◽  
Angelo Marcelo Tusset

In literature, the classic parametrically excited pendulum is vastly studied. It consists of a pendulum vertically displaced with a harmonic motion in the support while it oscillates. The chaos in this mechanism may appear depending on the frequency and amplitude of excitation in superharmonic and subharmonic resonance. The double pendulum is also well analyzed in literature, but not under parametric excitation. Therefore, this is the novelty in the present paper. The present analysis considers a double pendulum under a harmonic excitation following the same idea performed previously for a single pendulum. The results are obtained based on methods, such as, phase portraits, Poincaré sections and bifurcation diagrams. The 0–1 tests analyze the presence of chaos while the parameters are varied. The dimensionless parameters take into account the excitation frequency and amplitude as mentioned for the classic parametric pendulum. In this case, we have the particular characteristic that the two pendulums have the same length, the same mass and the same friction coefficient in the joints. The types of motion observed include fixed points, oscillations, rotations and chaos. Results also demonstrated that there was a self-synchronization between these pendulums in ideal excitation.


Author(s):  
Tarek A. Elgohary ◽  
Tamás Kalmár-Nagy

Aerodynamic forces for a 2-DOF aeroelastic system oscillating in pitch and plunge are modeled as a piecewise linear function. Equilibria of the piecewise linear model are obtained and their stability/bifurcations analyzed. Two of the main bifurcations are border collision and rapid/Hopf bifurcations. Continuation is used to generate the bifurcation diagrams of the system. Chaotic behavior following the intermittent route is also observed. To better understand the grazing phenomenon sets of initial conditions associated with the system behavior are defined and analyzed.


Sign in / Sign up

Export Citation Format

Share Document