scholarly journals Effect of Particle Diameter and Volume Fraction on Wear Behaviour of SiC-Particle Reinforced Aluminum Matrix Composites

2005 ◽  
Vol 71 (710) ◽  
pp. 3054-3060 ◽  
Author(s):  
Toshiro MIYAJIMA ◽  
Tomomi HONDA ◽  
Yoshiro IWAI
2007 ◽  
Vol 534-536 ◽  
pp. 901-904 ◽  
Author(s):  
Zoltán Gácsi ◽  
C. Hakan Gür ◽  
Andrea Makszimus ◽  
Tadeusz Pieczonka

The type, volume fraction, size, shape and arrangement of embedded particles influence the mechanical properties of the particle reinforced metal matrix composites. This presents the investigation of the SiC particle and porosity distributions in various aluminum matrix composites produced by cold- and hot-pressing. The microstructures were characterized by optical microscopy and stereological parameters. SiC and porosity volume fractions, and the anisotropy distribution function were measured to establish the influence of the consolidation method. The results showed that SiC particles are arranged in a different way during the cold- and hot pressing. The amount of porosity in the hot pressed specimens is always lower than that in the cold pressed ones; however, cold pressed and sintered samples have few large pores whereas more fine pores develop in the hot pressed ones. In the cold pressed specimens, heating rate for sintering influences the final density, the amount of porosity increases parallel to the increase in the relative particle size; and coating of SiC particles with Cu lowers the porosity while Ni-coating does not result in such an effect.


2017 ◽  
Vol 5 (2) ◽  
pp. 20-30
Author(s):  
Zaman Khalil Ibrahim

In this research aluminum matrix composites (AMCs) was reinforced by titanium carbide (TiC) particles and was produced. Powder metallurgy technique (PM) has been used to fabricate AMCs reinforced with various amounts (0%, 4%, 8%, 12%, 16% and 20% volume fraction) of TiC particles to study the effect of different volume fractions on mechanical properties of the Al-TiC composites. Measurements of compression strength and hardness showed that mechanical properties of composites increased with an increase in volume fraction of TiC Particles. Al-20 % vol. TiC composites exhibited the best properties with hardness value (97HRB) and compression strength value (275Mpa).


2010 ◽  
Vol 455 ◽  
pp. 302-306 ◽  
Author(s):  
Xing Xin Xu ◽  
Xiao Hui Zhang ◽  
Chuan Shao Liu ◽  
Bo Zhao

With the rapid development of aviation at home, particle reinforced metal matrix composites (PRMMCs) has been widely applied recently. But at the same time, the difficult machining has gradually been one of the most outstanding bottle-necks that restrict the rapid enhancement of productivity. Here, in virtue of the self-developed ultrasonic drilling equipment, hole-making experiments of common and ultrasonic vibration drilling are performed on SiC particle reinforced aluminum-matrix composites (SiCp/Al)with different content of SiC by using two types of tungsten carbide drill. Drilling characteristics of machining composites with ultrasonic vibration are analyzed from such respects as the composites crush, drilling force, drill wear and hole surface quality. Studies show that, during the ultrasonic vibration drilling process, SiC particle in the composites is prone to break along the crystal connection boundary or suffer ductile fracture under the dynamic ultrasonic impulse, in which the cutting resistance could be reduced and the tool edge could be protected. Thereby, drilling locating precision and hole surface quality could be enhanced, wear of the drill chisel edge effectively improved, and the drilling torque reduced about 30%.


2016 ◽  
Vol 254 ◽  
pp. 110-115
Author(s):  
Mihai Ovidiu Cojocaru ◽  
Mihaela Raluca Condruz ◽  
Florică Tudose

In this paper was followed the processing flow of aluminum-alumina compositions (10÷20% alumina) in powder state, aiming to obtain aluminum matrix composites reinforced with alumina particles, starting from selecting and mixing the grading fraction of both components reaching up to sintering; it was analyzed the way in which reflects the variation of grading fraction ratio (expressed through average particle diameter in the analyzed fractions limits) on the level of technological interest features: apparent density, tapped density, flowability, presability and on densification after sintering (in various environments). By transmission electron microscopy was observed that aluminum particles showed on the surface a nanoscale oxide film, so the sintering occurs between congeneric areas – by solid phase sintering mechanisms [1, 2, 3]. The analysis of thermophysical properties revealed a decrease of thermal diffusivity at an increase of alumina, simultaneous with the decrease of the densification level.


1993 ◽  
Vol 323 ◽  
Author(s):  
Shy-Wen Lai ◽  
D. D. L. Chung

AbstractAluminum-matrix composites containing AIN or SiC particles were fabricated by vacuum infiltration of liquid aluminum into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AIN was superior to Al/SiC in thermal conductivity. At 59 vol.% AIN, Al/AlN had a thermal conductivity of 157 W/m. °C and a thermal expansion coefficient of 9.8 × 10−-6°C−1 (35–100 °C). Al/AlN had similar tensile strength and higher ductility compared to Al/SiC of a similar reinforcement volume fraction at room temperature, but exhibited higher tensile strength and higher ductility at 300–400°C. The ductility of Al/AlN increased with increasing temperature from 22 to 400°C, while that of Al/SiC did not change with temperature. The superior high temperature resistance of Al/AlN is attributed to the lack of a reaction between Al and AIN, in contrast to the reaction between Al and SiC in AI/SiC.


2014 ◽  
Vol 1017 ◽  
pp. 98-103
Author(s):  
Fei Hu Zhang ◽  
Kai Wang ◽  
Peng Qiang Fu ◽  
Meng Nan Wu

With silicon particles reinforced aluminum matrix composites with high volume fraction becoming a new hotspot on research and application in the aerospace materials and electronic packaging materials, the machinability of this material needs to be explored. This paper reports research results obtained from the surface grinding experiment of silicon particles reinforced aluminum matrix composites using black silicon carbide wheel, green silicon carbide wheel, white fused alumina wheel and chromium alumina wheel. The issues discussed are grinding force, surface roughness, the comparison of different grinding wheels, the micro-morphology of the work piece. The results showed that the grinding force was related with the grinding depth and the grinding wheel material, the grinding force was increasing as the grinding depth growing. The surface roughness was between 0.29μm and 0.48μm using the silicon carbide wheel. The surface of the work piece had concaves caused by silicon particles shedding and grooves caused by the grains observed by the SEM and CLSM.


2011 ◽  
Vol 704-705 ◽  
pp. 935-940
Author(s):  
De Zhi Zhu ◽  
Wei Ping Chen ◽  
Yuan Yuan Li

Strain-rate sensitivities of 55-65vol.% aluminum 2024-T6/TiB2composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar. Results showed that 55-65vol.% aluminum 2024-T6/TiB2composites exhibited significant strain-rate sensitivities, which were three times higher than that of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with reinforcement content increasing (up to 60%), which agreed with the previous researches. The aluminum 2024-T6/TiB2composites showed hybrid fracture characteristics including particle cracking and aluminum alloy softening under dynamic loading. The flow stresses predicted by Johnson-Cook model increased slowly when the reinforcement volume fraction ranged in 10%-40%. While the reinforcement volume fraction was over 40%, the flow stresses of aluminum matrix composites increased obviously and the strains dropped sharply. Keywords: Composite materials; Dynamic compression; Stress-strain relationship


Sign in / Sign up

Export Citation Format

Share Document