scholarly journals Effect of Design Variables on Maximum Load Capacity of Hydrodynamically Air-Lubricated Foil Journal Bearings with Assembly Preload Applied

2008 ◽  
Vol 74 (741) ◽  
pp. 1154-1162 ◽  
Author(s):  
Kiyoshi HATAKENAKA ◽  
Youhei YAMAGUCHI
1974 ◽  
Vol 96 (1) ◽  
pp. 226-232 ◽  
Author(s):  
C. Cusano ◽  
T. F. Conry

The design problem is formulated for multi-recess hydrostatic journal bearings with a design criterion of minimum total power loss. The design is subject to the constraints of constant ratio of the recess area to the total bearing area and maximum load capacity for a given recess geometry. The L/D ratio, eccentricity ratio, ratio of recess area to total bearing area, and shaft rotational speed are considered as parameters. The analysis is based on the bearing model of Raimondi and Boyd [1]. This model is generally valid for low-to-moderate speeds and a ratio of recess area-to-total bearing area of approximately 0.5 or greater. Design charts are presented for bearings having a ratio of recess area-to-total bearing area of 0.6 and employing capillary and orifice restrictors, these being the most common types of compensating elements. A design example is given to illustrate the use of the design charts.


1972 ◽  
Vol 94 (1) ◽  
pp. 69-73 ◽  
Author(s):  
C. Cusano

An analytical solution for the performance characteristics of finite porous journal bearings is obtained. Results are presented which relate the eccentricity ratio and coefficient of friction as functions of load number for design variables of 0.0001, 0.001, 0.01, and 0.1. The load capacity obtained by using the finite bearing theory is compared to the load capacity obtained by using the short-bearing approximation and the infinite-bearing approximation.


1975 ◽  
Vol 97 (4) ◽  
pp. 616-623 ◽  
Author(s):  
O. Pinkus

The compressible Reynolds Equation under isothermal conditions was solved for finite elliptical and 3-lobe bearings with the load vector acting in any arbitrary direction over the full range of 360 deg. Envelopes of minimum and maximum eccentricity for a given set of operating conditions are provided, the first to yield maximum load capacity, and the second to assist stability by a choice of the highest possible ε. Some values of the spring and damping forces are also given and it is shown that in comparison with conventional bearings, the non-circular designs offer a significant advance in stiffness, particularly for low ε, when instability is most often encountered.


1984 ◽  
Vol 17 (3) ◽  
pp. 155-161 ◽  
Author(s):  
M. El-Sherbiny ◽  
F. Salem ◽  
N. El-Hefnawy

Lubricants ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 47
Author(s):  
Federico Colombo ◽  
Luigi Lentini ◽  
Terenziano Raparelli ◽  
Andrea Trivella ◽  
Vladimir Viktorov

Because of their distinctive characteristics, aerostatic bearings are particularly suitable for high-precision applications. However, because of the compressibility of the lubricant, this kind of bearing is characterized by low relative stiffness and poor damping. Compensation methods represent a valuable solution to these limitations. This paper presents a design procedure for passively compensated bearings controlled by diaphragm valves. Given a desired air gap height at which the system should work, the procedure makes it possible to maximize the stiffness of the bearing around this value. The designed bearings exhibit a quasi-static infinite stiffness for load variation ranging from 20% to almost 50% of the maximum load capacity of the bearing. Moreover, the influence of different parameters on the performance of the compensated pad is evaluated through a sensitivity analysis.


Sign in / Sign up

Export Citation Format

Share Document