Design of Multi-Recess Hydrostatic Journal Bearings for Minimum Total Power Loss

1974 ◽  
Vol 96 (1) ◽  
pp. 226-232 ◽  
Author(s):  
C. Cusano ◽  
T. F. Conry

The design problem is formulated for multi-recess hydrostatic journal bearings with a design criterion of minimum total power loss. The design is subject to the constraints of constant ratio of the recess area to the total bearing area and maximum load capacity for a given recess geometry. The L/D ratio, eccentricity ratio, ratio of recess area to total bearing area, and shaft rotational speed are considered as parameters. The analysis is based on the bearing model of Raimondi and Boyd [1]. This model is generally valid for low-to-moderate speeds and a ratio of recess area-to-total bearing area of approximately 0.5 or greater. Design charts are presented for bearings having a ratio of recess area-to-total bearing area of 0.6 and employing capillary and orifice restrictors, these being the most common types of compensating elements. A design example is given to illustrate the use of the design charts.

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Andres Clarens ◽  
Amir Younan ◽  
Shibo Wang ◽  
Paul Allaire

Lubricants are necessary in tilting-pad journal bearings to ensure separation between solid surfaces and to dissipate heat. They are also responsible for much of the undesirable power losses that can occur through a bearing. Here, a novel method to reduce power losses in tilting-pad journal bearings is proposed in which the conventional lubricant is substituted by a binary mixture of synthetic lubricant and dissolved CO2. These gas-expanded lubricants (GELs) would be delivered to a reinforced bearing housing capable of withstanding modest pressures less than 10 MPa. For bearings subject to loads that are both variable and predictable, GELs could be used to adjust lubricant properties in real time. High-pressure lubricants, mostly gases, have already been explored in tilting-pad journal bearings as a means to accommodate higher shaft speeds while reducing power losses and eliminating the potential for thermal degradation of the lubricant. These gas-lubricated bearings have intrinsic limitations in terms of bearing size and load capacity. The proposed system would combine the loading capabilities of conventional lubricated bearings with the efficiency of gas-lubricated bearings. The liquid or supercritical CO2 serves as a low-viscosity and completely miscible additive to the lubricant that can be easily removed by purging the gas after releasing the pressure. In this way, the lubricant can be fully recycled, as in conventional systems, while controlling the lubricant properties dynamically by adding liquid or supercritical CO2. Lubricant properties of interest, such as viscosity, can be easily tuned by controlling the pressure inside the bearing housing. Experimental measurements of viscosity for mixtures of polyalkylene glycol (PAG)+CO2 at various compositions demonstrate that significant reductions in mixture viscosity can be achieved with relatively small additions of CO2. The measured parameters are used in a thermoelastohydrodynamic model of tilting-pad journal bearing performance to evaluate the bearing response to GELs. Model estimates of power loss, eccentricity ratio, and pad temperature suggest that bearings would respond quite favorably over a range of speed and preload conditions. Calculated power loss reductions of 20% are observed when compared with both a reference petroleum lubricant and PAG without CO2. Pad temperature is also maintained without significant increases in eccentricity ratio. Both power loss and pad temperature are directly correlated with PAG-CO2 composition, suggesting that these mixtures could be used as “smart” lubricants responsive to system operating conditions.


1972 ◽  
Vol 94 (1) ◽  
pp. 69-73 ◽  
Author(s):  
C. Cusano

An analytical solution for the performance characteristics of finite porous journal bearings is obtained. Results are presented which relate the eccentricity ratio and coefficient of friction as functions of load number for design variables of 0.0001, 0.001, 0.01, and 0.1. The load capacity obtained by using the finite bearing theory is compared to the load capacity obtained by using the short-bearing approximation and the infinite-bearing approximation.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hui-Hui Feng ◽  
Chun-Dong Xu ◽  
Jie Wan

The water-lubricated bearings have been paid attention for their advantages to reduce the power loss and temperature rise and increase load capacity at high speed. To fully study the complete dynamic coefficients of two water-lubricated, hydrostatic journal bearings used to support a rigid rotor, a four-degree-of-freedom model considering the translational and tilting motion is presented. The effects of tilting ratio, rotary speed, and eccentricity ratio on the static and dynamic performances of the bearings are investigated. The bulk turbulent Reynolds equation is adopted. The finite difference method and a linear perturbation method are used to calculate the zeroth- and first-order pressure fields to obtain the static and dynamic coefficients. The results suggest that when the tilting ratio is smaller than 0.4 or the eccentricity ratio is smaller than 0.1, the static and dynamic characteristics are relatively insensitive to the tilting and eccentricity ratios; however, for larger tilting or eccentricity ratios, the tilting and eccentric effects should be fully considered. Meanwhile, the rotary speed significantly affects the performance of the hydrostatic, water-lubricated bearings.


2014 ◽  
Vol 621 ◽  
pp. 437-442
Author(s):  
Jian Jun Zhu ◽  
Jian Jun Du ◽  
Bing Li ◽  
Chang Lin Li ◽  
Dun Liu

The thrust foil bearing, as one of the key parts in high-speed rotating machineries, is used to sustain the axial force, and its load performance has a crucial relationship with the structural parameters and working condition. In this paper the top foil is modeled as a thin plate supported by the bumps underneath. The finite element method (FEM) is used to calculate the structural deformation coupled with the pressure distribution obtained through the solution of Reynolds equation by the finite difference method (FDM). The effects of structural and operating parameters, such as rotational speed, eccentricity ratio, top foil thickness and bump foil thickness on the load capacity and frictional torque are discussed in detail. The results show that the increase of rotational speed, eccentricity ratio and bump foil thickness is beneficial to increase the load capacity and frictional torque. The effect of variation of top foil thickness on load capacity is not obvious, which implies that the top foil plays a role in building the lubricant surface rather than providing supporting stiffness.


1975 ◽  
Vol 97 (2) ◽  
pp. 168-178 ◽  
Author(s):  
H. Blok

For full journal bearings impulse capacity, as “consumed” typically during the “dominant quasi-squeeze interval” of severe duty cycles, has proved itself a design criterion much more significant than the conventional one of maximum or time-averaged load capacity. This is first shown for assumedly perfectly rigid bearing/journal systems which, however, are rather unrealistic. Thereupon the author proceeds with illustrating the promising potentialities for promoting impulse capacity that are inherent in “flapping action”, the generalized kind of squeezing engendered by the elastic and pulsating distortion of the circumferential contour of the bearing surface.


1975 ◽  
Vol 97 (4) ◽  
pp. 616-623 ◽  
Author(s):  
O. Pinkus

The compressible Reynolds Equation under isothermal conditions was solved for finite elliptical and 3-lobe bearings with the load vector acting in any arbitrary direction over the full range of 360 deg. Envelopes of minimum and maximum eccentricity for a given set of operating conditions are provided, the first to yield maximum load capacity, and the second to assist stability by a choice of the highest possible ε. Some values of the spring and damping forces are also given and it is shown that in comparison with conventional bearings, the non-circular designs offer a significant advance in stiffness, particularly for low ε, when instability is most often encountered.


1974 ◽  
Vol 188 (1) ◽  
pp. 527-536 ◽  
Author(s):  
C. Cusano Ms

The characteristics of externally pressurized journal bearings with four recesses and with membrane-type variable-flow restrictors as compensating elements are analytically investigated by using the bearing model of Raimondi and Boyd. The effects of the ratio of the recess pressure at zero eccentricity to the supply pressure (pressure ratio), the eccentricity ratio, the compliance of the membrane and the shaft rotation on the lubricant flow rate, the load capacity and the stiffness of these bearings are presented for a given aspect ratio and inter-recess*** land width-to-diameter ratio. For a non-rotating shaft, it is shown that when the bearing operates at zero eccentricity there is a pressure ratio that gives an optimum bearing stiffness. This pressure ratio is a function of the aspect ratio of the bearing only. Using this pressure ratio, data for the load capacity and stiffness of the bearing are presented for an eccentricity ratio that varies from 0 to 0·1. For these data, the membrane compliances used are those that would give an infinite bearing stiffness if the bearing were operating at zero eccentricity.


Author(s):  
Guido M. J. Delhaes ◽  
Anton van Beek ◽  
Ron A. J. van Ostayen ◽  
Rob H. Munnig-Schmidt

Aerodynamic journal bearings are commonly used to support high-speed rotors. In applications where the shaft rotates concentric, like turbines and high-speed spindles, grooved aerodynamic bearings are used because they can run concentric. Plain aerodynamic journal bearings are unstable in the concentric position and are therefore not used for these applications. The instability is caused by the 90° attitude angle of the plain bearing at low rotational speeds. However by increasing the rotational speed the attitude angle of the plain bearing approaches the attitude angle of the grooved bearing. Moreover up to a certain speed the load capacity of the plain bearing is higher than the load capacity found for grooved bearings. In certain circumstances plain bearings might be preferable, since the plain bearing is much easier to manufacture. In this work a comparison is outlined for the plain and herringbone grooved bearings.


Sign in / Sign up

Export Citation Format

Share Document