scholarly journals Drag force of circular cylinder blade wind turbines driven by steady lift force of longitudinal vortex

2021 ◽  
Vol 87 (894) ◽  
pp. 20-00375-20-00375
Author(s):  
Kasumi SAKAMOTO ◽  
Withun HEMSUWAN ◽  
Tsutomu TAKAHASHI
2013 ◽  
Vol 284-287 ◽  
pp. 557-561
Author(s):  
Jie Li Fan ◽  
Wei Ping Huang

The two-degrees-of-freedom VIV of the circular cylinder with high mass-ratio is numerically simulated with the software ANSYS/CFX. The VIV characteristic is analyzed in the different conditions (Ur=3, 5, 6, 8, 10). When Ur is 5, 6, 8 and 10, the conclusion which is different from the cylinder with low mass-ratio can be obtained. When Ur is 3, the frequency of in-line VIV is twice of that of cross-flow VIV which is equal to the frequency ratio between drag force and lift force, and the in-line amplitude is much smaller than the cross-flow amplitude. The motion trace is the crescent. When Ur is 5 and 6, the frequency ratio between the drag force and lift force is still 2, but the main frequency of in-line VIV is mainly the same as that of cross-flow VIV and the secondary frequency of in-line VIV is equal to the frequency of the drag force. The in-line amplitude is still very small compared with the cross-flow amplitude. When Ur is up to 8 and 10, the frequency of in-line VIV is the same as the main frequency of cross-flow VIV which is close to the inherent frequency of the cylinder and is different from the frequency of drag force or lift force. But the secondary frequency of cross-flow VIV is equal to the frequency of the lift force. The amplitude ratio of the VIV between in-line and cross-flow direction is about 0.5. When Ur is 5, 6, 8 and 10, the motion trace is mainly the oval.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3484
Author(s):  
Tai-Lin Chang ◽  
Shun-Feng Tsai ◽  
Chun-Lung Chen

Since the affirming of global warming, most wind energy projects have focused on the large-scale Horizontal Axis Wind Turbines (HAWTs). In recent years, the fast-growing wind energy sector and the demand for smarter grids have led to the use of Vertical Axis Wind Turbines (VAWTs) for decentralized energy generation systems, both in urban and remote rural areas. The goals of this study are to improve the Savonius-type VAWT’s efficiency and oscillation. The main concept is to redesign a Novel Blade profile using the Taguchi Robust Design Method and the ANSYS-Fluent simulation package. The convex contour of the blade faces against the wind, creating sufficient lift force and minimizing drag force; the concave contour faces up to the wind, improving or maintaining the drag force. The result is that the Novel Blade improves blade performance by 65% over the Savonius type at the best angular position. In addition, it decreases the oscillation and noise accordingly. This study achieved its two goals.


2018 ◽  
Vol 35 (6) ◽  
pp. 2386-2402 ◽  
Author(s):  
Ming Liu ◽  
Shan Cao ◽  
Shuliang Cao

Purpose The modeling of interphase forces plays a significant role in the numerical simulation of gas–liquid flow in a rotodynamic multiphase pump, which deserves detailed study. Design/methodology/approach Numerical analysis is conducted to estimate the influence of interphase forces, including drag force, lift force, virtual mass force, wall lubrication force and turbulent dispersion force. Findings The results show that the magnitude of the interphase forces can be sorted by: drag force > virtual mass force > lift force > turbulent dispersion force > wall lubrication force. The relations between interphase forces and velocity difference of gas–liquid flow and also the interphase forces and gas volume fraction are revealed. The distribution characteristics of interphase forces in the passages from impeller inlet to diffuser outlet are illustrated and analyzed. According to the results, apart from the drag force, the virtual mass force, lift force and turbulent dispersion force are required, whereas wall lubrication force can be neglected for numerical simulation of gas–liquid flow in a rotodynamic multiphase pump. Compared with the conventional numerical method which considers drag force only, the relative errors of predicted pressure rise and efficiency based on the proposed numerical method in account of four major forces can be reduced by 4.95 per cent and 3.00 per cent, respectively. Originality value The numerical analysis reveals the magnitude and distribution of interphase forces inside multiphase pump, which is meaningful for the simulation and design of multiphase pump.


2020 ◽  
Author(s):  
Yassine Ouakki ◽  
Abdelaziz Arbaoui

Abstract. The accurate prediction of loadings and velocities on a wind turbine blades is essential for the design and optimization of wind turbines rotors. However, the classical BEM still suffer from an inaccurate prediction of induced velocities and loadings, even if the classical correction like stall delay effect and tip loss correction are used. For low solidity rotors, the loadings are generally over-predicted in the tip region, since the far wake expansion is not accurately accounted for in the one-dimensional (1D) momentum theory. The 1D dimensional momentum theory supposes that the far wake axial induction is equal to twice the axial induction in the rotor plane, which results in an under-estimation of the axial induction factor in the tip region. Considering the complex nature of the flow around a rotating blade, the accurate estimation of 3D effects is still challenging, since most stall delay models still often tend to under-predict or over-predict the loadings near the root region. As for the solution method for the classical BEM equation, the induced velocities are computed accounting for the drag force. However, according to the Kutta-Joukowski theorem, the induced velocities on a blade element are only created by lift force. Accounting for drag force when solving the BEM will result in an over-estimation of the axial induction factor, while the tangential induction factor is under-estimated. To improve the accuracy of the BEM method, in this paper, the 1D momentum theory is corrected using a new far wake expansion model to take into account the radial flow effect. The blade element theory is corrected for three-dimensional effects through an improved stall delay model. An improved solution method for the BEM equations respecting the Kutta-Joukowski theorem is proposed. The improved BEM model is used to estimate the aerodynamic loads and velocities on the National Renewable Energy Laboratory Phase VI rotor blades. The results of this study show that the proposed BEM model gives an accurate prediction of the loads and velocities compared to the classical BEM model.


Sign in / Sign up

Export Citation Format

Share Document