Volatile Compounds and Accumulation of Acetaldehyde-Protein Adducts in Relation to Seed Quality and Storage Conditions

2001 ◽  
Vol 2 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Po-Ching Lee ◽  
Alan G. Taylor ◽  
Ming Zhang ◽  
Yohji Esashi
2015 ◽  
Vol 4 (3) ◽  
pp. 56 ◽  
Author(s):  
Alexandr Ya Yashin ◽  
Boris V. Nemzer ◽  
Emilie Combet ◽  
Yakov I. Yashin

<p>Despite the fact that mankind has been drinking tea for more than 5000 years, its chemical composition has been studied only in recent decades. These studies are primarily carried out using chromatographic methods. This review summarizes the latest information regarding the chemical composition of different tea grades by different chromatographic methods, which has not previously been reviewed in the same scope. Over the last 40 years, the qualitative and quantitative analyses of high volatile compounds were determined by GC and GC/MS. The main components responsible for aroma of green and black tea were revealed, and the low volatile compounds basically were determined by HPLC and LC/MS methods. Most studies focusing on the determination of catechins and caffeine in various teas (green, oolong, black and pu-erh) involved HPLC analysis.</p> <p>Knowledge of tea chemical composition helps in assessing its quality on the one hand, and helps to monitor and manage its growing, processing, and storage conditions on the other. In particular, this knowledge has enabled to establish the relationships between the chemical composition of tea and its properties by identifying the tea constituents which determine its aroma and taste. Therefore, assessment of tea quality does not only rely on subjective organoleptic evaluation, but also on objective physical and chemical methods, with extra determination of tea components most beneficial to human health. With this knowledge, the nutritional value of tea may be increased, and tea quality improved by providing via optimization of the growing, processing, and storage conditions.</p>


2011 ◽  
Vol 34 (2) ◽  
pp. 100-110 ◽  
Author(s):  
ANGELES F. RECAMALES ◽  
VALERIA GALLO ◽  
DOLORES HERNANZ ◽  
MARIA LOURDES GONZÁLEZ-MIRET ◽  
FRANCISCO J. HEREDIA

1998 ◽  
Vol 61 (10) ◽  
pp. 1352-1357 ◽  
Author(s):  
G. NTIRAMPEMBA ◽  
B. E. LANGLOIS ◽  
D. D. ARCHBOLD ◽  
T. R. HAMILTON-KEMP ◽  
M. M. BARTH

Aerobic, microaerophilic, coliform, and mold populations of Botrytis cinerea -inoculated strawberry fruit not exposed (control) or exposed to low and high quantities of four volatile compounds during storage at 2°C were determined after storage for 7 days and after removal of the volatile and transfer to 22°C for 3 days. Fruit harvested at the ripe stage were inoculated with 106 conidia B. cinerea per ml and were placed in plastic containers containing no volatile compound (control) or two quantities of (E)-2-hexenal (10 or 100 μl), (E)-2-hexenal diethyl acetal (30 or 300 μl), benzaldehyde (30 or 300 μl), or methyl benzoate (12 or 60 μl). The fruit containers were overwrapped with a low-density polyethylene film, sealed, stored at 2°C for 7 days, and then transferred to 22°C for 3 days. Aerobic, microaerophilic, and coliform populations of fruit exposed to volatile compounds tended to be lower than the Controls after storage at 2°C for 7 days and, depending on the volatile compound, similar, lower, or higher than the Controls after transfer and storage at 22°C. However, due to variability in initial aerobic, microaerophilic, and coliform populations of the fruit used in the different trials (P &lt; 0.05), none of the differences between control and treatment and between treatments within a sample time were significant (P &gt; 0.05). Strawberry fruit exposed to 100 μl of (E)-2-hexenal was the only treatment that did not show a significant increase in mold populations after transfer and storage at 22°C for 3 days. Additional studies are needed to determine if (E)-2-hexenal can be used in combination with other postharvest storage conditions, such as low temperature and controlled/modified atmosphere, to delay mold spoilage and extend the shelf life of the strawberry.


2015 ◽  
pp. 1-10 ◽  
Author(s):  
Nicole Roberta Giuggioli ◽  
Rossella Briano ◽  
Claudio Baudino ◽  
Cristiana Peano

1993 ◽  
Vol 17 (4) ◽  
pp. 174-179 ◽  
Author(s):  
James P. Barnett ◽  
John P. Jones

Abstract Although longleaf pine (Pinus palustris Mill.) seeds are considered the most susceptible of the southern pines to damage during collection, processing, and storage, results of these studies show that high seed quality can be assured for periods up to 20 yr through proper handling and storing techniques. Recommendations for long-term storage include drying seeds to moisture contents of 10% or less and storing at subfreezing temperatures, preferably near 0°F. Reevaluation of stratification treatments applied under operational conditions indicates that the soaking in water that is necessary for seed imbibition reduces total germination in an amount proportional to the length of the soak. Stratification is not recommended except under very controlled conditions. South. J. Appl. For. 17(4):174-179.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1264
Author(s):  
Mateusz Różański ◽  
Katarzyna Pielech-Przybylska ◽  
Maria Balcerek

The purpose of this study was to investigate the effects of alcohol by volume (ABV) and storage temperature on changes in the clarity of rye and plum distillates, and their content of volatile compounds. Distillates with initial ABVs of 93.26% v/v (rye distillate) and 82.03% v/v (plum distillate) were diluted with deionized water to 40, 50, and 70% v/v. The samples were stored in darkness at different temperatures (−18 °C, 0 °C, 8 °C, 20 °C) for 8 weeks. The results showed that reducing the alcohol content and storage temperature caused turbidity to increase. The samples prepared from rye distillate were characterized by significantly lower turbidity than those produced from plum distillate. The highest increase in turbidity in comparison to the controls was observed in the samples with 40% v/v alcohol content stored at a temperature of −18 °C. Storage of the rye and plum distillates samples at different temperatures resulted in changes to the concentrations of volatile compounds, i.e., lower levels of acetaldehyde and higher alcohols, and increased content of esters. However, the alcohol content and storage temperature had no statistically significant effect on methanol concentration.


Sign in / Sign up

Export Citation Format

Share Document