scholarly journals Design and Fabrication of Temperature Sensor for Weather Monitoring System using MEMS Technology

2018 ◽  
Vol 34 (5) ◽  
pp. 2510-2516
Author(s):  
Veeramani P. ◽  
Vimala Juliet A. ◽  
Sam Jebakumar J. ◽  
Jagadish R

In this paper, Micro Electro Mechanical System (MEMS) based temperature sensor is designed and fabricated for weather monitoring system at troposphere level. In this design we have used meander shape, because it is easy to vary the length. We have optimized the length in this design. Due to certain advantages like low cost, easily available, high melting and boiling point, molybdenum material is used for fabrication of this design. The four meander type temperature sensors are designed with various dimensions of sizes in 6.7mm×4mm, 9.5mm×4mm, 5.2mm×4mm, 6.5mm×4mm. The Temperature Coefficient of Resistance (TCR) values for four various sensors mentioned above are 3.4 ×10-4 C-1, 3.7×10-4 C-1, 7.0×10-4 C-1, 7.5×10-4 C-1. For radiosonde applications the sensor must have high sensitivity, high degree of accuracy, good linearity and with better TCR values. The experimental results are better for dimension 6.7mm ×4mm for all characteristics mentioned above. The practical results are compared with the theoretical values.

2018 ◽  
Vol 24 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Simone Luigi Marasso ◽  
Matteo Cocuzza ◽  
Valentina Bertana ◽  
Francesco Perrucci ◽  
Alessio Tommasi ◽  
...  

Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.


2020 ◽  
Vol 96 (1) ◽  
pp. 97-110
Author(s):  
James Hendee ◽  
Natchanon Amornthammarong ◽  
Lewis Gramer ◽  
Andrea Gomez

The role of elevated sea temperatures in coral bleaching has been well documented. Many of the sea temperature records utilized for purposes of widespread, multi-species bleaching predictions in recent publications have been acquired through satellite remote sensing. Satellites estimate sea temperatures at only a narrow range of depths near the surface of the ocean and may therefore not adequately represent the true temperatures endured by the world's coral ecosystems. To better characterize sea temperature regimes that coral reef ecosystems experience, as well as better define the individual thresholds for each species that bleaches, in situ sea temperature sensors are required. Commercial sensors are expensive in large quantities, however, reducing the capacity to conduct large- scale research programs to elucidate the range of significant scales of temperature variability. At the National Oceanic and Atmospheric Administration's (NOAA) Atlantic Oceanographic and Meteorological Laboratory (AOML), we designed a low-cost (roughly US$9 in parts) and high- precision sea temperature sensor that uses an Arduino microprocessor board and a high accuracy thermistor. This new temperature sensor autonomously records temperatures onto a memory chip and provides better accuracy (+0.05 °C) than a comparable commercial sensor (+0.2 °C). Moreover, it is not difficult to build; anyone who knows how to solder can build the temperature sensor. In March 2019, students at middle and high schools in Broward County, Florida, built close to 60 temperature sensors. During 2019, these sensors will be deployed by Reef Check, a global-scale coral reef monitoring organization, as well as by other programs to determine worldwide sea temperature regimes through the Opuhala Project (https://www. coral. noaa. gov/opuhala). This paper chronicles results from the initial proof-of-concept deployments for these AOML-designed sensors.


2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Baktiar Musa ◽  
Yasmin Mustapha Kamil ◽  
Muhammad Hafiz Abu Bakar ◽  
Ahmad Shukri Mohd Noor ◽  
Alyani Ismail ◽  
...  

A temperature sensor using single-mode tapered fiber is presented. To better understand the behaviour of a tapered optical fiber, transmission experiments with different taper profiles, specifically waist length were performed. The effects of taper profiles on the sensitivity of the sensor were also investigated. It is demonstrated that careful selection of the taper profile can increase the sensitivity of the sensor. In our experiment, a good temperature sensing result was achieved using the optimum parameter. The best sensitivity achieved was 45.5 pm/°C that measured the range of temperature from 30°C to 120°C. The fabricated sensors are easy to fabricate and relatively low cost. Our results indicate that the tapered fiber based temperature sensor has high sensitivity and good repeatability.  


2020 ◽  
pp. 177-181
Author(s):  
Saranya M D ◽  
Sakthi Priya V ◽  
Pradeepkumar G ◽  
Dineshkumar Ponnusamy

- In today’s situation involuntary classifications remain existence favoured over physical system. Home automation is playing significant part in humanoid lifespan. The paper is used intended for nursing and controlling the home-grown utilizations via World Wide Web which container interconnect through home automation system through an Internet entry, by means of announcement conventions. Home automation scheme uses the hand-held or vesture diplomacies as a user boundary. This paper goals at supervisory household utilizations via Smartphone using Bluetooth as announcement etiquette and interfaced with Arduino Board. It assimilates Passive Infrared (PIR) sensor, Temperature sensor, gas sensor, Light Dependent Resistor (LDR) sensor. At this time PIR sensor and Temperature sensors remained used for controlling the spotlight and fan. The statement through attendant permits the operator to excellent the fitting device. In the proposed organization an android app was developed to access the system wherever via Internet of things. The gas device used to designate the absorption of gas in the air. Buzzer attentive is given to warm others neighbouring home and also the possessor through internet via the smart receiver. The LDR is used to switch garden spotlight. This project provides a low cost and competent Homegrown Computerization System.


2014 ◽  
Vol 62 (4) ◽  
pp. 759-763 ◽  
Author(s):  
S. Walczak ◽  
M. Sibiński

Abstract The paper presents a comparative analysis of two types of flexible temperature sensors, made of carbon-based nanostructures composites. These sensors were fabricated by a low-cost screen-printing method, which qualifies them to large scale, portable consumer electronic products. Results of examined measurements show the possibility of application for thick film devices, especially dedicated to wearable electronics, also known as a textronics. Apart from general characterisation, the influence of technological processes on specific sensor parameters were examined, particulary the value of the temperature coefficient of resistance (TCR) and its stability during the device bending.


2019 ◽  
Vol 9 (02) ◽  
pp. 63-67
Author(s):  
Indra Feriadi ◽  
Fajar Aswin ◽  
M Iqbal Nugraha

Vibration measurement technology using conventional sensors such as piezoelectric (PZT) Accelerometer is still expensive. Currently, many low-cost vibration measuring devices have been developed by using Micro Electro Mechanical System (MEMS) technology. This study aims to analyze the results of vibration measurement system MEMS Accelerometer ADXL345 with PZT Accelerometer. This research applies design and develop approach with comparative data analysis technique, that is comparing data of result of measurement of MEMS Accelerometer ADXL345 to PZT Accelerometer Vibroport80. The construction comprises the ADXL345 sensor connected to the Arduino Mega 2560 microcontroller operated by Widows operating system and programming language Arduino IDE 1.08. Testing of measurements at Bearing speeds of 500, 1000, and 1500 RPM with length of time measurements at 5, 10, and 20 seconds respectively. The analysis of the test results shows that the MEMS Accelerometer ADXL345 of vibration measurement system can measure, process and display vibration measurement data larger 3% than PZT Accelerometer and can provide the best measurement accuracy at 20 seconds measurement length of time.


2015 ◽  
Author(s):  
Jinbing Hu ◽  
Jiabi Chen ◽  
Xuexue Luo ◽  
Binming Liang ◽  
Songlin Zhuang

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2700 ◽  
Author(s):  
Jun Zhu ◽  
Jian Lou

In order to improve the low temperature sensitivity of conventional sensors, a plasmonic multifunction temperature sensor with high sensitivity is proposed and investigated systematically in this paper. The sensor consists of two metal layers and two ethanol-sealed elliptical resonators connected to a straight waveguide by two rectangular tubes. We numerically analyzed the transmission characteristics of the Nano-device to assess its performance with the finite element method and achieved great optical properties. The results show that an obvious blue shift of the transmission spectrum appears by varying temperatures, exhibiting a great sensing effect. Sensitivity of the sensor reaches −3.64 nm/°C, far greater than conventional temperature sensors. Our research also demonstrates that the transmission spectrum could be modulated efficiently by the ratio of semi-short axis to semi-major axis of the ellipse resonators and the width of two same rectangular tubes. Furthermore, the Nano-device has a filtering characteristic. The transmittances of pass-band and stop-band are 96.1% and 0.1%, respectively. The results of this study can pave the way for low-cost sensing application in high-density photonic circuits and biosensors.


Sign in / Sign up

Export Citation Format

Share Document