scholarly journals A novel low-cost, high-precision sea temperature sensor for coral reef monitoring

2020 ◽  
Vol 96 (1) ◽  
pp. 97-110
Author(s):  
James Hendee ◽  
Natchanon Amornthammarong ◽  
Lewis Gramer ◽  
Andrea Gomez

The role of elevated sea temperatures in coral bleaching has been well documented. Many of the sea temperature records utilized for purposes of widespread, multi-species bleaching predictions in recent publications have been acquired through satellite remote sensing. Satellites estimate sea temperatures at only a narrow range of depths near the surface of the ocean and may therefore not adequately represent the true temperatures endured by the world's coral ecosystems. To better characterize sea temperature regimes that coral reef ecosystems experience, as well as better define the individual thresholds for each species that bleaches, in situ sea temperature sensors are required. Commercial sensors are expensive in large quantities, however, reducing the capacity to conduct large- scale research programs to elucidate the range of significant scales of temperature variability. At the National Oceanic and Atmospheric Administration's (NOAA) Atlantic Oceanographic and Meteorological Laboratory (AOML), we designed a low-cost (roughly US$9 in parts) and high- precision sea temperature sensor that uses an Arduino microprocessor board and a high accuracy thermistor. This new temperature sensor autonomously records temperatures onto a memory chip and provides better accuracy (+0.05 °C) than a comparable commercial sensor (+0.2 °C). Moreover, it is not difficult to build; anyone who knows how to solder can build the temperature sensor. In March 2019, students at middle and high schools in Broward County, Florida, built close to 60 temperature sensors. During 2019, these sensors will be deployed by Reef Check, a global-scale coral reef monitoring organization, as well as by other programs to determine worldwide sea temperature regimes through the Opuhala Project (https://www. coral. noaa. gov/opuhala). This paper chronicles results from the initial proof-of-concept deployments for these AOML-designed sensors.

2018 ◽  
Vol 24 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Simone Luigi Marasso ◽  
Matteo Cocuzza ◽  
Valentina Bertana ◽  
Francesco Perrucci ◽  
Alessio Tommasi ◽  
...  

Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.


2020 ◽  
pp. 177-181
Author(s):  
Saranya M D ◽  
Sakthi Priya V ◽  
Pradeepkumar G ◽  
Dineshkumar Ponnusamy

- In today’s situation involuntary classifications remain existence favoured over physical system. Home automation is playing significant part in humanoid lifespan. The paper is used intended for nursing and controlling the home-grown utilizations via World Wide Web which container interconnect through home automation system through an Internet entry, by means of announcement conventions. Home automation scheme uses the hand-held or vesture diplomacies as a user boundary. This paper goals at supervisory household utilizations via Smartphone using Bluetooth as announcement etiquette and interfaced with Arduino Board. It assimilates Passive Infrared (PIR) sensor, Temperature sensor, gas sensor, Light Dependent Resistor (LDR) sensor. At this time PIR sensor and Temperature sensors remained used for controlling the spotlight and fan. The statement through attendant permits the operator to excellent the fitting device. In the proposed organization an android app was developed to access the system wherever via Internet of things. The gas device used to designate the absorption of gas in the air. Buzzer attentive is given to warm others neighbouring home and also the possessor through internet via the smart receiver. The LDR is used to switch garden spotlight. This project provides a low cost and competent Homegrown Computerization System.


2014 ◽  
Vol 62 (4) ◽  
pp. 759-763 ◽  
Author(s):  
S. Walczak ◽  
M. Sibiński

Abstract The paper presents a comparative analysis of two types of flexible temperature sensors, made of carbon-based nanostructures composites. These sensors were fabricated by a low-cost screen-printing method, which qualifies them to large scale, portable consumer electronic products. Results of examined measurements show the possibility of application for thick film devices, especially dedicated to wearable electronics, also known as a textronics. Apart from general characterisation, the influence of technological processes on specific sensor parameters were examined, particulary the value of the temperature coefficient of resistance (TCR) and its stability during the device bending.


2018 ◽  
Vol 34 (5) ◽  
pp. 2510-2516
Author(s):  
Veeramani P. ◽  
Vimala Juliet A. ◽  
Sam Jebakumar J. ◽  
Jagadish R

In this paper, Micro Electro Mechanical System (MEMS) based temperature sensor is designed and fabricated for weather monitoring system at troposphere level. In this design we have used meander shape, because it is easy to vary the length. We have optimized the length in this design. Due to certain advantages like low cost, easily available, high melting and boiling point, molybdenum material is used for fabrication of this design. The four meander type temperature sensors are designed with various dimensions of sizes in 6.7mm×4mm, 9.5mm×4mm, 5.2mm×4mm, 6.5mm×4mm. The Temperature Coefficient of Resistance (TCR) values for four various sensors mentioned above are 3.4 ×10-4 C-1, 3.7×10-4 C-1, 7.0×10-4 C-1, 7.5×10-4 C-1. For radiosonde applications the sensor must have high sensitivity, high degree of accuracy, good linearity and with better TCR values. The experimental results are better for dimension 6.7mm ×4mm for all characteristics mentioned above. The practical results are compared with the theoretical values.


2011 ◽  
Vol 128-129 ◽  
pp. 694-697
Author(s):  
Yu Hua Cheng ◽  
Li Bing Bai ◽  
Lin Nie

Traditional measurement for geometric parameter of the irregular shape is considered as high cost and low efficiency, and large-scale automatic measurement cannot be achieved. In this paper, a low-cost, high-precision measurement system of irregular shape is presented. The system based on linear array CCD non-contact measurement method, in which a CCD camera is controlled to scan the projection of thread in the parallel optical field to acquire thread images. Meanwhile, an edge detection method based on gradient operator and linear fitting principle is proposed, the results show that the design improve the measurement precision efficiently.


2013 ◽  
Vol 706-708 ◽  
pp. 762-764
Author(s):  
Li Na Wang ◽  
Li Jun Liu ◽  
Wan Xun Wang ◽  
Shan Yang Qin

Along with large scale application of cluster wells in Sulige gas field, the common low pressure flow meter can not be used in metering single well production with connecting wells in series. For this reason, we have developed a flow metering instrument of natural gas, which has the features of high static pressure, low differential pressure and high precision. Installed at the high pressure end of gas production wellhead, the instrument can bear 40Mpa static high pressure and has the features such as low pressure loss, broad measuring range, small temperature drift, high precision, long service life, solid, low cost and so on. With required measurement accuracy and resistance to pressure, which have been verified by the wide application, the instrument gave a solution to metering single well production of cluster wells.


2020 ◽  
Author(s):  
Emma Kennedy ◽  
Chris Roelfsema ◽  
Mitchell Lyons ◽  
Eva Kovacs ◽  
Rodney Borrego-Acevedo ◽  
...  

AbstractCoral reef management and conservation stand to benefit from improved high-resolution global mapping. Yet classifications employed in large-scale reef mapping to date are typically poorly defined, not shared or region-specific. Here we present Reef Cover, a new coral reef geomorphic zone classification, developed to support global-scale coral reef habitat mapping in a transparent and version-based framework. We developed scalable classes by focusing on attributes that can be observed remotely, but whose membership rules also reflect knowledge of reef formation, growth and functioning. Bridging the divide between earth observation data and geo-ecological knowledge of reefs, Reef Cover maximises the trade-off between applicability at global scales, and relevance and accuracy at local scales. We use the Caroline and Mariana Island chains in the Pacific as a case study to demonstrate use of the classification scheme and its scientific and conservation applications. The primary application of Reef Cover is the Allen Coral Atlas global coral reef mapping project, but the system will support bespoke reef mapping conducted at a variety of spatial scales.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4087 ◽  
Author(s):  
Gareth Lewis ◽  
Patrick Merken ◽  
Marijke Vandewal

In this paper, we demonstrate an improvement in the accuracy of a low-cost smart temperature sensor, by measurement of the nonlinear curvature correction at multiple temperature references. The sensors were positioned inside a climate chamber and connected outside to a micro-controller via a network cable. The chamber temperature was increased systematically over a wide range from −20 °C to 55 °C. A set of calibration curves was produced from the best fitting second-order polynomial curves for the offset in temperature between the sensor and reference. An improvement in accuracy of ±0.15 °C is with respect to the mentioned temperature range, compared to the significantly higher value reported of ±0.5 °C by the manufacturer for similar conditions. In summary, we demonstrate a significant improvement in the calibration of a low-cost, smart sensor frequently used in research and academic projects over a useful range of temperatures.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3652 ◽  
Author(s):  
Xiaoxiao Song ◽  
Huafeng Liu ◽  
Yanyan Fang ◽  
Chun Zhao ◽  
Ziqiang Qu ◽  
...  

Temperature sensors are one of the most important types of sensors, and are employed in many applications, including consumer electronics, automobiles and environmental monitoring. Due to the need to simultaneously measure temperature and other physical quantities, it is often desirable to integrate temperature sensors with other physical sensors, including accelerometers. In this study, we introduce an integrated gold-film resistor-type temperature sensor for in situ temperature measurement of a high-precision MEMS accelerometer. Gold was chosen as the material of the temperature sensor, for both its great resistance to oxidation and its better compatibility with our in-house capacitive accelerometer micro-fabrication process. The proposed temperature sensor was first calibrated and then evaluated. Experimental results showed the temperature measurement accuracy to be 0.08 °C; the discrepancies among the sensors were within 0.02 °C; the repeatability within seven days was 0.03 °C; the noise floor was 1 mK/√[email protected] Hz and 100 μK/√[email protected] Hz. The integration test with a MEMS accelerometer showed that by subtracting the temperature effect, the bias stability within 46 h for the accelerometer could be improved from 2.15 μg to 640 ng. This demonstrates the capability of measuring temperature in situ with the potential to eliminate the temperature effects of the MEMS accelerometer through system-level compensation.


Sign in / Sign up

Export Citation Format

Share Document