scholarly journals Segmentation of Activated Sludge Filaments using Phase Contrast Images

2018 ◽  
Vol 11 (3) ◽  
pp. 145-153
Author(s):  
Yuen Hang Ho ◽  
Humaira Nisar ◽  
Muhammad Burhan Khan

Segmentation algorithms play an important role in image processing and analysis. The identification of objects and process monitoring strongly depends on the accuracy of the segmentation algorithms. Waste water treatment plants are used to treat wastewater from municipal and industrial plants. Activated sludge process is used in wastewater treatment plants to biodegrade the organic constituents present in waste water. This biodegradation is done with the help of microorganisms and bacteria. There are two important types of microscopic organisms present in the activated sludge plants, named as flocs as filaments, which are visible under microscope. In this paper we study the microscopic images of wastewater using phase contrast microscopy. The images are acquired from wastewater sample using a microscope. The samples of wastewater are collected from domestic wastewater treatment plant aeration tank. Our main aim is to segment threadlike organisms knows as filaments. Several segmentation algorithms (such as edge based algorithm, k-means algorithm, texture based algorithm, and watershed algorithm) will be explored and their performance will be compared using gold approximations of the images. The performance of the algorithms are evaluated using different performance metrics, such as Rand Index, specificity, variation of information, and accuracy. We have found that edge based segmentation works well for phase contrast microscopic images of activated sludge wastewater.

2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Dinda Rita K. Hartaja ◽  
Imam Setiadi

Generally, wastewater of nata de coco industry contains suspended solids and COD were high, ranging from 90,000 mg / l. The high level of of the wastewater pollutants, resulting in nata de coco industry can not be directly disposed of its wastewater into the environment agency. Appropriate technology required in order to process the waste water so that the treated water can meet the environmental quality standards that are allowed. Designing the waste water treatment plant that is suitable and efficient for treating industrial wastewater nata de coco is the activated sludge process. Wastewater treatment using activated sludge process of conventional (standard) generally consists of initial sedimentation, aeration and final sedimentation.Keywords : Activated Sludge, Design, IPAL


2013 ◽  
Vol 8 (1) ◽  
pp. 1-8

Successful start-up of a full-scale wastewater treatment plant (WWTP) is a key issue for the succeeding operation of WWTP on the one hand and the nutritious phosphorus removal is of great concern on the other. After the construction of Mudanjiang WWTP with a flow rate of 100,000 m3 d-1 in Heilongjiang Province of China, a novel way of start-up through feeding wastewater continuously into the system was attempted against the conventional start-up method of inoculating activated sludge in the aeration tank by feeding wastewater intermittently. Activated sludge was cultivated and proliferated in the aeration tanks instead of dosing acclimated sludge from other source. After one-month’s start-up operation, MLSS, SV and SVI increased to 2.5 kg m-3, 30% and nearly 80% respectively, which indicated that quick and simple start-up had been achieved. After successful start-up, an investigation into phosphorus removal was conducted with the emphasis on influencing factors such as ORP and NOx-N concentration etc. When the aeration tank was switched from aerobic to anaerobic mode, phosphorus removal efficiency of 80% could be realized within the whole treatment system. Experimental results revealed that an ORP of -140 mV and NOX-N of 2 mg l-1 were critical for the anaerobic phosphorus release, and DO in the range of 1.7-2.5 mg l-1, BOD5/TP of 20-30 and SVI of 70~80 as well as SRT of 5 days were the optimal phosphorus removal conditions for the aeration tanks.


1997 ◽  
Vol 36 (4) ◽  
pp. 57-68 ◽  
Author(s):  
A. Bidault ◽  
F. Clauss ◽  
D. Helaine ◽  
C. Balavoine

The quality of the effluent from a waste water treatment plant using the activated sludge process depends upon the bacteria flocculation efficiency. Intensive research work has been devoted to understanding flocculation phenomena and to correct disorders. The addition of very fine but dense talc particles to the aeration tank immediately improves floc formation and densifies the new flocs created. In the longer term, the fine talc particles improve floc structuration and form stable and strong flocs. This has been demonstrated by running a modified activated sludge through the high shear strength of pumps and hydrocyclones. These fine talc particles offer a solution to solve floc settleability problems which so frequently arise when biological disorders appear in waste water treatment plants. Two practical cases are presented.


2013 ◽  
Vol 8 (1) ◽  
pp. 61-67 ◽  

The methylation of mercury has been investigated and documented mainly in sediments, fish and microorganisms, while limited number of relevant studies is available for wastewater. The procedure of mercury methylation can occur via biological pathway (by microorganisms) and via chemical or photochemical reactions. Methylation of mercury occurs mainly under anaerobic conditions, but some studies have shown its existence also under aerobic conditions. The resulting concentration of methyl mercury, which is a highly toxic compound, depends on the specific rates of methylation/demethylation of mercury. The factors affecting these procedures are the availability of inorganic mercury, pH, organic matter concentration, microbial activity, redox potential and temperature. Bacteria which can methylate mercury are often present in wastewater, and, therefore, the formation of methyl mercury during wastewater treatment is possible. The objective of the present investigation was the determination of methyl mercury in a pilotscale activated sludge wastewater treatment plant supplied with synthetic wastewater enriched with mercury. For this purpose, a Liquid-Liquid Extraction / Simultaneous Derivatization - GC/MS method was developed and applied for the analysis of samples from the aeration tank, from the treatment plant effluent and from the sludge. Methyl mercury was not detected in the samples (detection limit 0.07 μg l-1), leading to the conclusion that mercury is not methylated under the particular experimental conditions of the pilot-scale water treatment plant.


2020 ◽  
Vol 1 (1) ◽  
pp. 697-704
Author(s):  
Kris Pranoto ◽  
Widia Rahmawati Pahilda ◽  
Muhammad Sonny Abfertiawan ◽  
Apridawati Elistyandari ◽  
Andi Sutikno

ABSTRAK Di Indonesia, operasional penambangan batubara umumnya melibatkan tenaga kerja dengan jumlah yang besar. Kondisi ini memberikan tantangan tersendiri dalam pengelolaan dampak lingkungan yang berpotensi timbul dari aktivitas manusia. Salah satu potensi tersebut yakni air limbah domestik. Air limbah domestik merupakan air limbah yang berasal dari aktivitas hidup sehari-hari manusia yang berhubungan dengan pemakaian air. Di area operasional pertambangan, air limbah domestik dapat timbul dari area pemukiman karyawan dan perkantoran. Karena potensi dampaknya terhadap lingkungan, air limbah domestik harus diolah sebelum dialirkan ke badan air penerima. Sejak tahun 1990an, diawal operasi penambangan, Kaltim Prima Coal (KPC) telah membangun dan mengoperasiokan Instalasi Pengolahan Air Limbah Domestik (IPALD) untuk mengolah air limbah domestik yang bersumber dari pemukiman karyawan dan perkantoran. Terdapat 12 IPALD dengan teknologi lumpur aktif yang beroperasi di area KPC. Lumpur aktif merupakan salah satu teknologi pengolahan air limbah domestik dengan memanfaatkan peran bakteri aerob untuk mendegradasi material organik yang terkandung didalam air limbah domestik. Makalah ini disajikan untuk mendeskripsikan performa teknologi lumpur aktif yang digunakan dalam IPALD KPC dan tantangan yang dihadapi dalam pengoperasiannya. Salah satu tantangan yang dihadapi yakni pemenuhan baku mutu yang tertuang dalam Keputusan Menteri Lingkungan Hidup dan Kehutanan No. P. 68 Tahun 2016 tentang Baku Mutu Air Limbah Domestik. Baku mutu terbaru mengatur konsentrasi efluen IPALD lebih ketat dari sebelumnya dan terdapat paramater baru, diantaranya amoniak yang memerlukan perhatian dalam pengoperasian IPALD. Kata kunci: air limbah domestik, lumpur aktif, ipald  ABSTRACT In Indonesia, coal mining operations generally involve a huge number of workers. This condition causes its own challenges in managing environmental impacts that potentially generated from human activities. One of them is domestic wastewater. Domestic waste water is waste water that comes from activities of daily living of humans related to water usage. In mining operations, domestic wastewater is generated from office and residential areas. Because of the potential impact on the environment, domestic wastewater must be treated before flowing to natural water bodies. Since the beginning of mining operations in 1990s, PT Kaltim Prima Coal has been building and operating Domestic Wastewater Treatment Plant (IPALD) to treat domestic wastewater resulting from offices and residential areas. There are 12 IPALDs with activated sludge technology operating in the KPC area. Active sludge is one of the domestic wastewater treatment technologies by utilizing the role of aerobic bacteria to degrade organic material contained in domestic wastewater. This paper is presented to describe the performance of activated sludge technology used in the KPC’s IPALD and the challenges faced in its operation. One of the challenges faced is the fulfillment of water quality standards in Minister of Environment and Forestry Decree No. P. 68 of 2016 concerning Domestic Wastewater Quality Standards. The latest quality standards regulate the effluent concentration of IPALD more stringent than before and there are new parameters, including ammonia which requires attention in the operation of IPALD. Keywords: domestic waste water, activated sludge, ipald 


2013 ◽  
Vol 68 (6) ◽  
pp. 1400-1405 ◽  
Author(s):  
M. Linarić ◽  
M. Markić ◽  
L. Sipos

The shock effect, survival and ability of activated sludge to acclimatize to wastewater containing different concentrations of NaCl and Na2SO4 were investigated under laboratory conditions. To accomplish this, the potential penetration of a sewage system by seawater as a consequence of storm surge flooding was simulated. The experiments were conducted using activated sludge taken from the aeration tank of a communal wastewater treatment plant and adding different concentrations up to 40 g/L of NaCl and 4.33 g/L of Na2SO4. The effects of salinity on the activated sludge were monitored for 5 weeks based on the values of pH, dissolved oxygen, total suspended solids, volatile suspended solids, sludge volume, sludge volume index, electrokinetic potential, respirometric measurements and enzymatic activity. The addition of salt sharply reduced or completely inhibited the microbial activity in activated sludge. When salt concentrations were below 10 g/L NaCl, microorganisms were able to acclimatize in several weeks and achieve the same initial activity as in raw sludge samples. When the salt concentration was above 30 g/L NaCl, the acclimatization process was very slow or impossible.


1994 ◽  
Vol 30 (3) ◽  
pp. 11-19 ◽  
Author(s):  
Chang-Won Kim ◽  
Byung-Goon Kim ◽  
Tae-Ho Lee ◽  
Tae-Joo Park

An on-line toxic detection system is introduced for early and continuous observation of toxicity in an industrial wastewater treatment plant. The system consists of a contact chamber and an on-line respiration meter. If a raw wastewater sample is taken at the head of the wastewater treatment plant, one can detect toxicity of the wastewater before it reaches the aeration tank. For proper usage of this system a maximum respiration rate should be measured in the contact chamber. To apply this system on the petrochemical wastewater the Qe/Qs, ratio should be maintained higher than 0.6 among other operating conditions required When this system was tested under high and low pH, Co2+ inhibition, and recovered catalyst wastes addition, the system responded very sensitively.


Engevista ◽  
2015 ◽  
Vol 17 (3) ◽  
pp. 375 ◽  
Author(s):  
Renato Pereira Ribeiro ◽  
Jaime Lopes da Mota Oliveira ◽  
Débora Cynamon Kligerman ◽  
Renata Barbosa Alvim ◽  
Samara Almeida Andrade ◽  
...  

Nitrous oxide emissions were determined in three campaigns in the aeration tank of a full scale conventional activated sludge wastewater treatment plant. During these experiments, the carbonaceous organic matter (BOD and COD) removal was high and rather constant (97-98% and 93-96%). The results indicate that the concentration of total nitrogen in the influent wastewater, especially NH4+, and the aeration flow rate are key controlling factor of N2O emissions from the aeration tank. Nitrification was the major source of N2O, suggested by the behavior of DO concentrations, NO3-/NH4+ ratio and pH values along the six interlinked zones of the aeration tank. Excessive air flow intensified N2O transfer from the liquor to the atmosphere by air stripping.


2013 ◽  
Vol 1 (1) ◽  
pp. 1-13
Author(s):  
Riyadh M. S. Al-Obaidi

The biological unit in the wastewater treatment plants can be considered the most sensitive treatment units. It begins work with dynamic conditions for several weeks until reach the steady state conditions. Therefore, this study was done to observe aeration tank behavior (activated sludge unit) in the wastewater treatment plant of general hospital complex of Mosul city. Sampling made daily for more than 30 days. The biological treatment monitoring parameter was tested. The study shown that there is need to about 45-60 days to complete the start up work to be the operation stable and successful (if it worked without seeding). There was simple growth of microorganisms with modest treatment of organic matter, and then it rose after 3 first weeks of operation. There was contrary relationship between organic content and suspended solids in the aeration tank; an equation of this relation has been presented. The pH has risen in the first days in the effluent wastewater, then return to be less than influent pH with a relative relation with the activity of the microorganisms and surface aeration in the tank. The EC was simply reduced in the Effluent along with the study.


Sign in / Sign up

Export Citation Format

Share Document