Microphytic Crust Influence on Interrill Erosion and Infiltration Capacity

1995 ◽  
Vol 38 (1) ◽  
pp. 139-146 ◽  
Author(s):  
J. D. Williams ◽  
J. P. Dobrowolski ◽  
N. E. West
Soil Research ◽  
2002 ◽  
Vol 40 (6) ◽  
pp. 963 ◽  
Author(s):  
A. H. Elliott ◽  
Y. Q. Tian ◽  
J. C. Rutherford ◽  
W. T. Carlson

Damage to pasture as a result of intensive grazing and treading by cattle increases the erosion of sediment and associated nutrients. In this study we present a model for the effect of treading damage on interrill erosion. The model formulation is based on the interrill erosion components of conventional process-based erosion models, with some modifications. The model was developed using data from small rainfall simulator plots (0.5 m2) on hill-country pasture in New Zealand with varying amounts of treading damage. Treading increased the amount of bare ground, and this resulted in increased concentrations of sediment in runoff. Concentration was found to increase linearly with the amount of bare ground. Treading resulted in increased runoff, which had some effect on sediment concentration for the high runoff rates in the experiments, but would have a negligible effect on concentration for typical natural runoff rates. However, the increased runoff results in greater sediment loads because a larger volume of sediment-laden runoff is produced. The increase in runoff was modelled through a reduction factor for the hydraulic conductivity which varied linearly with the fraction of damaged ground. For 100% damaged ground the hydraulic conductivity was approximately halved. The recovery of bare ground and damaged ground over time after treading was also assessed. Bare ground resulting from treading typically halved after 2 months, while damage took longer to recover. Such treading-related effects are superimposed on seasonal variations in erodibility, bare ground, and infiltration capacity. Based on the results of the study, some measures to reduce treading-related erosion are suggested.


2015 ◽  
Vol 48 (7) ◽  
pp. 595-604
Author(s):  
Myeong Jun Nam ◽  
◽  
Sang Deog Park ◽  
Seung Kyu Lee ◽  
Seung Sook Shin
Keyword(s):  

2016 ◽  
Author(s):  
Luke McGuire ◽  
◽  
Francis K. Rengers ◽  
Jason W. Kean ◽  
Benjamin B. Mirus ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jacob R. Schaperow ◽  
Dongyue Li ◽  
Steven A. Margulis ◽  
Dennis P. Lettenmaier

AbstractHydrologic models predict the spatial and temporal distribution of water and energy at the land surface. Currently, parameter availability limits global-scale hydrologic modelling to very coarse resolution, hindering researchers from resolving fine-scale variability. With the aim of addressing this problem, we present a set of globally consistent soil and vegetation parameters for the Variable Infiltration Capacity (VIC) model at 1/16° resolution (approximately 6 km at the equator), with spatial coverage from 60°S to 85°N. Soil parameters derived from interpolated soil profiles and vegetation parameters estimated from space-based MODIS measurements have been compiled into input files for both the Classic and Image drivers of the VIC model, version 5. Geographical subsetting codes are provided, as well. Our dataset provides all necessary land surface parameters to run the VIC model at regional to global scale. We evaluate VICGlobal’s ability to simulate the water balance in the Upper Colorado River basin and 12 smaller basins in the CONUS, and their ability to simulate the radiation budget at six SURFRAD stations in the CONUS.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1053
Author(s):  
Yuan Yao ◽  
Wei Qu ◽  
Jingxuan Lu ◽  
Hui Cheng ◽  
Zhiguo Pang ◽  
...  

The Coupled Model Intercomparison Project Phase 6 (CMIP6) provides more scenarios and reliable climate change results for improving the accuracy of future hydrological parameter change analysis. This study uses five CMIP6 global climate models (GCMs) to drive the variable infiltration capacity (VIC) model, and then simulates the hydrological response of the upper and middle Huaihe River Basin (UMHRB) under future shared socioeconomic pathway scenarios (SSPs). The results show that the five-GCM ensemble improves the simulation accuracy compared to a single model. The climate over the UMHRB likely becomes warmer. The general trend of future precipitation is projected to increase, and the increased rates are higher in spring and winter than in summer and autumn. Changes in annual evapotranspiration are basically consistent with precipitation, but seasonal evapotranspiration shows different changes (0–18%). The average annual runoff will increase in a wavelike manner, and the change patterns of runoff follow that of seasonal precipitation. Changes in soil moisture are not obvious, and the annual soil moisture increases slightly. In the intrayear process, soil moisture decreases slightly in autumn. The research results will enhance a more realistic understanding of the future hydrological response of the UMHRB and assist decision-makers in developing watershed flood risk-management measures and water and soil conservation plans.


2021 ◽  
Vol 13 (7) ◽  
pp. 1247
Author(s):  
Bowen Zhu ◽  
Xianhong Xie ◽  
Chuiyu Lu ◽  
Tianjie Lei ◽  
Yibing Wang ◽  
...  

Extreme hydrologic events are getting more frequent under a changing climate, and a reliable hydrological modeling framework is important to understand their mechanism. However, existing hydrological modeling frameworks are mostly constrained to a relatively coarse resolution, unrealistic input information, and insufficient evaluations, especially for the large domain, and they are, therefore, unable to address and reconstruct many of the water-related issues (e.g., flooding and drought). In this study, a 0.0625-degree (~6 km) resolution variable infiltration capacity (VIC) model developed for China from 1970 to 2016 was extensively evaluated against remote sensing and ground-based observations. A unique feature in this modeling framework is the incorporation of new remotely sensed vegetation and soil parameter dataset. To our knowledge, this constitutes the first application of VIC with such a long-term and fine resolution over a large domain, and more importantly, with a holistic system-evaluation leveraging the best available earth data. The evaluations using in-situ observations of streamflow, evapotranspiration (ET), and soil moisture (SM) indicate a great improvement. The simulations are also consistent with satellite remote sensing products of ET and SM, because the mean differences between the VIC ET and the remote sensing ET range from −2 to 2 mm/day, and the differences for SM of the top thin layer range from −2 to 3 mm. Therefore, this continental-scale hydrological modeling framework is reliable and accurate, which can be used for various applications including extreme hydrological event detections.


2010 ◽  
Vol 11 (1) ◽  
pp. 122-138 ◽  
Author(s):  
Guoxiang Yang ◽  
Laura C. Bowling ◽  
Keith A. Cherkauer ◽  
Bryan C. Pijanowski ◽  
Dev Niyogi

Abstract Impervious surface area (ISA) has different surface characteristics from the natural land cover and has great influence on watershed hydrology. To assess the urbanization effects on streamflow regimes, the authors analyzed the U.S. Geological Survey (USGS) streamflow data of 16 small watersheds in the White River [Indiana (IN)] basin. Correlation between hydrologic metrics (flow distribution, daily variation in streamflow, and frequency of high-flow events) and ISA was investigated by employing the nonparametric Mann–Kendall method. Results derived from the 16 watersheds show that urban intensity has a significant effect on all three hydrologic metrics. The Variable Infiltration Capacity (VIC) model was modified to represent ISA in urbanized basins using a bulk parameterization approach. The model was then applied to the White River basin to investigate the potential ability to simulate the water and energy cycle response to urbanization. Correlation analysis for individual VIC grid cells indicates that the VIC urban model was able to reproduce the slope magnitude and mean value of the USGS streamflow metrics. The urban model also reproduced the urban heat island (UHI) seen in the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature products, especially for the grids encompassing the city of Indianapolis, IN. The difference of the hydrologic metrics obtained from the VIC model with and without urban representation indicates that the streamflow regime in the White River has been modified because of urban development. The observed data, together with model analysis, suggested that 3%–5% ISA in a watershed is the detectable threshold, beyond which urbanization effects start to have a statistically significant influence on streamflow regime.


Soil Research ◽  
2001 ◽  
Vol 39 (2) ◽  
pp. 239 ◽  
Author(s):  
Yuxia Li ◽  
J. N. Tullberg ◽  
D. M. Freebairn

Wheel traffic can lead to compaction and degradation of soil physical properties. This study, as part of a study of controlled traffic farming, assessed the impact of compaction from wheel traffic on soil that had not been trafficked for 5 years. A tractor of 40 kN rear axle weight was used to apply traffic at varying wheelslip on a clay soil with varying residue cover to simulate effects of traffic typical of grain production operations in the northern Australian grain belt. A rainfall simulator was used to determine infiltration characteristics. Wheel traffic significantly reduced time to ponding, steady infiltration rate, and total infiltration compared with non-wheeled soil, with or without residue cover. Non-wheeled soil had 4—5 times greater steady infiltration rate than wheeled soil, irrespective of residue cover. Wheelslip greater than 10% further reduced steady infiltration rate and total infiltration compared with that measured for self-propulsion wheeling (3% wheelslip) under residue-protected conditions. Where there was no compaction from wheel traffic, residue cover had a greater effect on infiltration capacity, with steady infiltration rate increasing proportionally with residue cover (R 2 = 0.98). Residue cover, however, had much less effect on inf iltration when wheeling was imposed. These results demonstrated that the infiltration rate for the non-wheeled soil under a controlled traffic zero-till system was similar to that of virgin soil. However, when the soil was wheeled by a medium tractor wheel, infiltration rate was reduced to that of long-term cropped soil. These results suggest that wheel traffic, rather than tillage and cropping, might be the major factor governing infiltration. The exclusion of wheel traffic under a controlled traffic farming system, combined with conservation tillage, provides a way to enhance the sustainability of cropping this soil for improved infiltration, increased plant-available water, and reduced runoff-driven soil erosion.


Sign in / Sign up

Export Citation Format

Share Document