scholarly journals Extensive Evaluation of a Continental-Scale High-Resolution Hydrological Model Using Remote Sensing and Ground-Based Observations

2021 ◽  
Vol 13 (7) ◽  
pp. 1247
Author(s):  
Bowen Zhu ◽  
Xianhong Xie ◽  
Chuiyu Lu ◽  
Tianjie Lei ◽  
Yibing Wang ◽  
...  

Extreme hydrologic events are getting more frequent under a changing climate, and a reliable hydrological modeling framework is important to understand their mechanism. However, existing hydrological modeling frameworks are mostly constrained to a relatively coarse resolution, unrealistic input information, and insufficient evaluations, especially for the large domain, and they are, therefore, unable to address and reconstruct many of the water-related issues (e.g., flooding and drought). In this study, a 0.0625-degree (~6 km) resolution variable infiltration capacity (VIC) model developed for China from 1970 to 2016 was extensively evaluated against remote sensing and ground-based observations. A unique feature in this modeling framework is the incorporation of new remotely sensed vegetation and soil parameter dataset. To our knowledge, this constitutes the first application of VIC with such a long-term and fine resolution over a large domain, and more importantly, with a holistic system-evaluation leveraging the best available earth data. The evaluations using in-situ observations of streamflow, evapotranspiration (ET), and soil moisture (SM) indicate a great improvement. The simulations are also consistent with satellite remote sensing products of ET and SM, because the mean differences between the VIC ET and the remote sensing ET range from −2 to 2 mm/day, and the differences for SM of the top thin layer range from −2 to 3 mm. Therefore, this continental-scale hydrological modeling framework is reliable and accurate, which can be used for various applications including extreme hydrological event detections.

2017 ◽  
Vol 18 (2) ◽  
pp. 529-553 ◽  
Author(s):  
Huan Wu ◽  
Robert F. Adler ◽  
Yudong Tian ◽  
Guojun Gu ◽  
George J. Huffman

Abstract A multiple-product-driven hydrologic modeling framework (MMF) is utilized for evaluation of quantitative precipitation estimation (QPE) products, motivated by improving the utility of satellite QPE in global flood modeling. This work addresses the challenge of objectively determining the relative value of various QPEs at river basin/subbasin scales. A reference precipitation dataset is created using a long-term water-balance approach with independent data sources. The intercomparison of nine QPEs and corresponding hydrologic simulations indicates that all products with long-term (2002–13) records have similar merits as over the short-term (April–June 2013) Iowa Flood Studies period. The model performance in calculated streamflow varies approximately linearly with precipitation bias, demonstrating that the model successfully translated the level of precipitation quality to streamflow quality with better streamflow simulations from QPEs with less bias. Phase 2 of the North American Land Data Assimilation System (NLDAS-2) has the best streamflow results for the Iowa–Cedar River basin, with daily and monthly Nash–Sutcliffe coefficients and mean annual bias of 0.81, 0.88, and −2.1%, respectively, for the long-term period. The evaluation also indicates that a further adjustment of NLDAS-2 to form the best precipitation estimation should consider spatial–temporal distribution of bias. The satellite-only products have lower performance (peak and timing) than other products, while simple bias adjustment can intermediately improve the quality of simulated streamflow. The TMPA research product (TMPA-RP; research-quality data) can generate results approaching those of the ground-based products with only monthly gauge-based adjustment to the TMPA real-time product (TMPA-RT; near-real-time data). It is further noted that the streamflow bias is strongly correlated to precipitation bias at various time scales, though other factors may play a role as well, especially on the daily time scale.


Author(s):  
V. M. Artyushenko ◽  
D. Y. Vinogradov

The article deals with the issues related to the problem of ballistic design of the space system of remote sensing of the Earth on stable near-circular solar-synchronous orbits with long-term existence of spacecraft. We propose a rational method of maintaining a solar-synchronous orbit in given light conditions with prolonged active lifetime of space systems. In solving this problem, the total time of normal operation of the system for a given period of operation, during which the most favorable conditions for the use of spacecraft are provided on the main parts of orbits, is taken as a target function.


2007 ◽  
Author(s):  
Klaus Schäfer ◽  
Gregor Schürmann ◽  
Carsten Jahn ◽  
Candy Matuse ◽  
Herbert Hoffmann ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2131
Author(s):  
Jamon Van Den Hoek ◽  
Alexander C. Smith ◽  
Kaspar Hurni ◽  
Sumeet Saksena ◽  
Jefferson Fox

Accurate remote sensing of mountainous forest cover change is important for myriad social and ecological reasons, but is challenged by topographic and illumination conditions that can affect detection of forests. Several topographic illumination correction (TIC) approaches have been developed to mitigate these effects, but existing research has focused mostly on whether TIC improves forest cover classification accuracy and has usually found only marginal gains. However, the beneficial effects of TIC may go well beyond accuracy since TIC promises to improve detection of low illuminated forest cover and thereby normalize measurements of the amount, geographic distribution, and rate of forest cover change regardless of illumination. To assess the effects of TIC on the extent and geographic distribution of forest cover change, in addition to classification accuracy, we mapped forest cover across mountainous Nepal using a 25-year (1992–2016) gap-filled Landsat time series in two ways—with and without TIC (i.e., nonTIC)—and classified annual forest cover using a Random Forest classifier. We found that TIC modestly increased classifier accuracy and produced more conservative estimates of net forest cover change across Nepal (−5.2% from 1992–2016) TIC. TIC also resulted in a more even distribution of forest cover gain across Nepal with 3–5% more net gain and 4–6% more regenerated forest in the least illuminated regions. These results show that TIC helped to normalize forest cover change across varying illumination conditions with particular benefits for detecting mountainous forest cover gain. We encourage the use of TIC for satellite remote sensing detection of long-term mountainous forest cover change.


2021 ◽  
Vol 13 (4) ◽  
pp. 631
Author(s):  
Kyle D. Woodward ◽  
Narcisa G. Pricope ◽  
Forrest R. Stevens ◽  
Andrea E. Gaughan ◽  
Nicholas E. Kolarik ◽  
...  

Remote sensing analyses focused on non-timber forest product (NTFP) collection and grazing are current research priorities of land systems science. However, mapping these particular land use patterns in rural heterogeneous landscapes is challenging because their potential signatures on the landscape cannot be positively identified without fine-scale land use data for validation. Using field-mapped resource areas and household survey data from participatory mapping research, we combined various Landsat-derived indices with ancillary data associated with human habitation to model the intensity of grazing and NTFP collection activities at 100-m spatial resolution. The study area is situated centrally within a transboundary southern African landscape that encompasses community-based organization (CBO) areas across three countries. We conducted four iterations of pixel-based random forest models, modifying the variable set to determine which of the covariates are most informative, using the best fit predictions to summarize and compare resource use intensity by resource type and across communities. Pixels within georeferenced, field-mapped resource areas were used as training data. All models had overall accuracies above 60% but those using proxies for human habitation were more robust, with overall accuracies above 90%. The contribution of Landsat data as utilized in our modeling framework was negligible, and further research must be conducted to extract greater value from Landsat or other optical remote sensing platforms to map these land use patterns at moderate resolution. We conclude that similar population proxy covariates should be included in future studies attempting to characterize communal resource use when traditional spectral signatures do not adequately capture resource use intensity alone. This study provides insights into modeling resource use activity when leveraging both remotely sensed data and proxies for human habitation in heterogeneous, spectrally mixed rural land areas.


2021 ◽  
Vol 10 (3) ◽  
pp. 154
Author(s):  
Robert Jeansoulin

Providing long-term data about the evolution of railway networks in Europe may help us understand how European Union (EU) member states behave in the long-term, and how they can comply with present EU recommendations. This paper proposes a methodology for collecting data about railway stations, at the maximal extent of the French railway network, a century ago.The expected outcome is a geocoded dataset of French railway stations (gares), which: (a) links gares to each other, (b) links gares with French communes, the basic administrative level for statistical information. Present stations are well documented in public data, but thousands of past stations are sparsely recorded, not geocoded, and often ignored, except in volunteer geographic information (VGI), either collaboratively through Wikipedia or individually. VGI is very valuable in keeping track of that heritage, and remote sensing, including aerial photography is often the last chance to obtain precise locations. The approach is a series of steps: (1) meta-analysis of the public datasets, (2) three-steps fusion: measure-decision-combination, between public datasets, (3) computer-assisted geocoding for ‘gares’ where fusion fails, (4) integration of additional gares gathered from VGI, (5) automated quality control, indicating where quality is questionable. These five families of methods, form a comprehensive computer-assisted reconstruction process (CARP), which constitutes the core of this paper. The outcome is a reliable dataset—in geojson format under open license—encompassing (by January 2021) more than 10,700 items linked to about 7500 of the 35,500 communes of France: that is 60% more than recorded before. This work demonstrates: (a) it is possible to reconstruct transport data from the past, at a national scale; (b) the value of remote sensing and of VGI is considerable in completing public sources from an historical perspective; (c) data quality can be monitored all along the process and (d) the geocoded outcome is ready for a large variety of further studies with statistical data (demography, density, space coverage, CO2 simulation, environmental policies, etc.).


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Pablo M. De Salazar ◽  
Nicholas B. Link ◽  
Karuna Lamarca ◽  
Mauricio Santillana

Abstract Background Residents of Long-Term Care Facilities (LTCFs) represent a major share of COVID-19 deaths worldwide. Measuring the vaccine effectiveness among the most vulnerable in these settings is essential to monitor and improve mitigation strategies. Methods We evaluate the early effect of the administration of BNT162b2-mRNA vaccine to individuals older than 64 years residing in LTCFs in Catalonia, Spain. We monitor all the SARS-CoV-2 documented infections and deaths among LTCFs residents once more than 70% of them were fully vaccinated (February–March 2021). We develop a modeling framework based on the relationship between community and LTCFs transmission during the pre-vaccination period (July–December 2020). We compute the total reduction in SARS-CoV-2 documented infections and deaths among residents of LTCFs over time, as well as the reduction in the detected transmission for all the LTCFs. We compare the true observations with the counterfactual predictions. Results We estimate that once more than 70% of the LTCFs population are fully vaccinated, 74% (58–81%, 90% CI) of COVID-19 deaths and 75% (36–86%, 90% CI) of all expected documented infections among LTCFs residents are prevented. Further, detectable transmission among LTCFs residents is reduced up to 90% (76–93%, 90% CI) relative to that expected given transmission in the community. Conclusions Our findings provide evidence that high-coverage vaccination is the most effective intervention to prevent SARS-CoV-2 transmission and death among LTCFs residents. Widespread vaccination could be a feasible avenue to control the COVID-19 pandemic conditional on key factors such as vaccine escape, roll out and coverage.


Sign in / Sign up

Export Citation Format

Share Document