scholarly journals Indoor Climate and Energy Model Calibration with Monitored Data of a Naturally Ventilated Dairy Barn in a Cold Climate

2021 ◽  
Vol 37 (5) ◽  
pp. 851-859
Author(s):  
Sy Nguyen-Ky ◽  
Katariina Penttilä

HighlightsIndoor climate and energy model of a dairy barn is constructed and calibrated with collected data.Long-term monitoring of indoor conditions and electricity consumption greatly facilitates the model calibration process.Statistical benchmarks given by guidelines confirm the usability and reliability of the model.Abstract. This study demonstrates an application of ICE model calibration by using sensor building metrics in a naturally ventilated dairy house in a cold climate. The barn, at the time of the study, had 70 lactating cows and 30 calves with a total animal area of 1922 m2 and other auxiliary areas of 268 m2. Indoor condition data were collected by four integrated sensors inside the barn for six months, from March to August 2019. IDA ICE 4.8 SP1 simulation software was used to build and simulate the model, with calibration steps conducted first manually, then statistically. Actual weather and indoor condition data during the monitored period were used for calibration; statistical indices of the calibrated model were confirmed by the benchmarks given from ASHRAE Guideline 14-2014, IPMVP version 2016, and FEMP version 4.0 2015. The yielded result was a baseline ICE model, which can be further utilized in the study of energy conservation measures (ECMs), retrofitting feasibility, and ammonia and other contaminant gas emission mitigation. The abovementioned calibration practice and the proposals built on it open a pathway to achieve a higher level of energy efficiency for this type of livestock building. Keywords: Cold weather, Dairy farms, Model calibration, Natural ventilation.

2003 ◽  
Vol 40 (6) ◽  
pp. 1212-1215 ◽  
Author(s):  
Heloise Beaugendre ◽  
Francois Morency ◽  
Wagdi G. Habashi ◽  
Pascal Benquet

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2827
Author(s):  
Pavla Mocová ◽  
Jitka Mohelníková

Indoor climate comfort is important for school buildings. Nowadays, this is a topical problem, especially in renovated buildings. Poorly ventilated school classrooms create improper conditions for classrooms. A post-occupancy study was performed in a school building in temperate climatic conditions. The evaluation was based on the results of long-term monitoring of the natural ventilation strategy and measurements of the carbon dioxide concentration in the school classroom’s indoor environment. The monitoring was carried out in an old school building that was constructed in the 1970s and compared to testing carried out in the same school classroom after the building was renovated in 2016. Surprisingly, the renovated classroom had a significantly higher concentration of CO2. It was found that this was due to the regulation of the heating system and the new airtight windows. The occupants of the renovated classroom have a maintained thermal comfort, but natural ventilation is rather neglected. A controlled ventilation strategy and installation of heat recovery units are recommended to solve these problems with the classroom’s indoor environment. Microbiological testing of the surfaces in school classrooms also shows the importance of fresh air and solar radiation access for indoor comfort.


2021 ◽  
Vol 252 ◽  
pp. 111380
Author(s):  
José Eduardo Pachano ◽  
Carlos Fernández Bandera

2018 ◽  
Vol 878 ◽  
pp. 202-209 ◽  
Author(s):  
Feng Qian ◽  
Li Yang

The natural ventilation of residential areas has placed more and more emphasis on residential area planning, according to the relationship between natural ventilation environments and the layout of architecture, we can reduce the energy consumption and the adverse effect of wind outdoors, improve the living environment and quality of life, making harmony between human and the nature. In this paper, we use Air-Pak to simulate the wind environment of residential areas. Through analyzing and simulating the air field which forms when the wind blows around the residential buildings by Air-Pak, we explain the advantage of the combination of computer simulation software and residential area planning. And we give some advice to the layout of the outdoor environment early in the residential planning area by the simulation of outdoor environments of buildings.


2021 ◽  
Vol 13 (0) ◽  
pp. 1-6
Author(s):  
Rasa Džiugaitė-Tumėnienė ◽  
Domas Madeikis

The high share of global energy costs to create an indoor climate has been of increasing interest to the global community for several decades and is increasingly the focus of policy. This paper analyses the energy performance gap between actual energy consumption and energy demand obtained during the dynamic energy simulation and building certification. To identify the energy performance gap, an existing office of energy efficiency class B was selected as a case study. The simulation program IDA Indoor Climate and Energy was used to create a dynamic energy model, based on the designed documentation and the actual indoor climate parameters recorded by the building management system. The results of the case study showed that the accuracy and reliability of the results presented by the dynamic energy model of the building directly depend on the assumptions. The correct values of the internal heat gains, indoor climate parameters, human behavior, air quality levels at different times of the day and season, HVAC system operation parameters and operation modes, specific fan powers of ventilation systems, the seasonal energy efficiency of cooling equipment and characteristics of sun protection measures have to be selected.


2018 ◽  
Vol 28 (5) ◽  
pp. 677-692 ◽  
Author(s):  
Daniel Risberg ◽  
Mikael Risberg ◽  
Lars Westerlund

There is currently an increasing trend in Europe to build passive houses. In order to reduce the cost of installation, an air-heating system may be an interesting alternative. Heat supplied through ventilation ducts located at the ceiling was studied with computational fluid dynamics technique. The purpose was to illustrate the thermal indoor climate of the building. To validate the performed simulations, measurements were carried out in several rooms of the building. Furthermore, this study investigated if a designed passive house located above the Arctic Circle could fulfil heat requirements for a Swedish passive house standard. Our results show a heat loss factor of 18.8 W/m2 floor area and an annual specific energy use of 67.9 kWh/m2 floor area, would fulfils the criteria. Validation of simulations through measurements shows good agreement with simulations if the thermal inertia of the building was considered. Calculation of heat losses from a building with a backward weighted moving average outdoor temperature produced correct prediction of the heat losses. To describe the indoor thermal climate correctly, the entire volume needs to be considered, not only one point, which normally is obtained with building simulation software. The supply airflow must carefully be considered to fulfil a good indoor climate.


2021 ◽  
Vol 64 (2) ◽  
pp. 365-376
Author(s):  
Da-Vin Ahn ◽  
In-Kyung Shin ◽  
Jooseon Oh ◽  
Woo-Jin Chung ◽  
Hyun-Woo Han ◽  
...  

HighlightsRattling of tractor power take-off drivelines can be detrimental to operators.A novel driveline model, which includes a torsional damper, was constructed.The behavior of the model was validated against that of an actual tractor driveline.The validated model was used to determine the optimal torsional damper parameters.These optimal parameters were validated by laboratory tests.Abstract. Rattle noise and high levels of vibration in agricultural tractors lower the productivity of the operators and may cause serious health issues in them. This study examined a method for preventing resonance and reducing the torsional vibration that causes rattling in tractor power take-off (PTO) drivelines in the idle state using a two-stage torsional damper. The PTO driveline was simplified to a 6-DOF model based on the principle of equivalent mass moment of inertia using commercial simulation software. The variations in the angular velocity of the PTO drive shaft in an actual tractor were measured and compared to the simulation results using a single-stage torsional damper to validate the model. Using this validated PTO driveline model, the pre spring of a two-stage torsional damper was investigated to determine its optimal torsional stiffness to minimize torsional vibration. The simulation results showed that the variations in the angular velocity of the PTO drive shaft decreased as the torsional stiffness of the pre spring decreased; accordingly, an appropriate torsional stiffness reduced the variation in the angular velocity delivered to the PTO drive shaft. The optimal torsional stiffness of the pre spring was determined by considering the manufacturing limitations of the torsional damper and the magnitude of the input engine torque. A pre spring with this optimal torsional stiffness was installed on an actual PTO driveline to measure the angular velocity transmissibility, which was the ratio of the variation in the angular velocity of the engine flywheel to the variation in the angular velocity of the PTO drive shaft, and the results were compared with those of the simulation. When the angular velocity of the engine was 850 rpm, the angular velocity transmissibility of the PTO drive shaft was 0.4 in the actual test, similar to the value of 0.29 obtained using the simulation. Thus, the simulation-optimized pre spring was able to avoid the resonance domain, while considerably reducing the torsional vibration that leads to rattling. The results of this study support the safe operation of agricultural tractors and guide the evaluation of torsional damper configurations of different vehicles. Keywords: PTO driveline, Resonance, Simulation model, Torsional damper, Torsional vibration, Tractor rattle.


Author(s):  
Mikhail Poteshkin ◽  
Violeta Motuzienė

In this article, one of the Lithuanian hospitals, which was renovated in 2010, will be analysed. This work will analyse indoor microclimate parameters in the wards with natural and mechanical ventilation. For analysing this hospital’s indoor climate, some measurements in the wards were made and all the parameters were analysed. Moreover, for improving indoor parameters, for this work, natural ventilation in summer periods was designed, making ventilation in hospital hybrid. Because of this action, the consumption of electricity is reduced. In the last part of this work, there will be some analyses of price and CO2 cuts.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 406 ◽  
Author(s):  
Xiaoyu Ying ◽  
Yanling Wang ◽  
Wenzhe Li ◽  
Ziqiao Liu ◽  
Grace Ding

This paper presents a study of the effects of wind-induced airflow through the urban built layout pattern using statistical analysis. This study investigates the association between typically enclosed office building layout patterns and the wind environment. First of all, this study establishes an ideal site model of 200 m × 200 m and obtains four typical multi-story enclosed office building group layouts, namely the multi-yard parallel opening, the multi-yard returning shape opening, the overall courtyard parallel opening, and the overall courtyard returning shape opening. Then, the natural ventilation performance of different building morphologies is further evaluated via the computational fluid dynamics (CFD) simulation software Phoenics. This study compares wind speed distribution at an outdoor pedestrian height (1.5 m). Finally, the natural ventilation performance corresponding to the four layout forms is obtained, which showed that the outdoor wind environment of the multi-yard type is more comfortable than the overall courtyard type, and the degree of enclosure of the building group is related to the advantages and disadvantages of the outdoor wind environment. The quantitative relevance between building layout and wind environment is examined, according to which the results of an ameliorated layout proposal are presented and assessed by Phoenics. This research could provide a method to create a livable urban wind environment.


2019 ◽  
Vol 9 (3) ◽  
pp. 229-245
Author(s):  
Sofiane Rahmouni ◽  
Rachid Smail

Purpose The purpose of this paper is to achieve the national strategic agenda’s criteria that aim for accomplishing sustainable buildings by estimating the effects of energy efficiency measures in order to reduce energy consumption and CO2 emission. Design/methodology/approach A design approach has been developed based on simulation software and a modeled building. Therefore, a typical office building is considered for testing five efficiency measures in three climatic conditions in Algeria. This approach is conducted in two phases: first, the analysis of each measure’s effect is independently carried out in terms of cooling energy and heating energy intensities. Then, a combination of optimal measures for each climate zone is measured in terms of three sustainable indicators: final energy consumption, energy cost saving and CO2 emission. Findings The results reveal that a combination of optimal measures has a substantial impact on building energy saving and CO2 emission. This saving can rise to 41 and 31 percent in a hot and cold climate, respectively. Furthermore, it is concluded that obtaining higher building performance, different design alternatives should be adapted to the climate proprieties and the local construction materials must be applied. Originality/value This study is considered as an opportunity for achieving the national strategy, as it may contribute in improving office building performance and demonstrating a suitable tool to assist stakeholders in the decision making of most important parameters in the design stage for new or retrofit buildings.


Sign in / Sign up

Export Citation Format

Share Document