<i>Evaluating Gas and Particulate Matter Emissions and Downwind Concentration Impacts using the EPI Air Filter Wall System</i>

2021 ◽  
Author(s):  
Erin L Cortus ◽  
Ryan S Samuel ◽  
Xufei Yang ◽  
Robert C Thaler ◽  
Brian P Hetchler
2021 ◽  
Vol 11 (13) ◽  
pp. 6123
Author(s):  
Katarzyna Bebkiewicz ◽  
Zdzisław Chłopek ◽  
Hubert Sar ◽  
Krystian Szczepański ◽  
Magdalena Zimakowska-Laskowska

The aim of this study is to investigate the environmental hazards posed by solid particles resulting from road transport. To achieve this, a methodology used to inventory pollutant emissions was used in accordance with the recommendations of the EMEP/EEA (European Monitoring and Evaluation Programme/European Economic Area). This paper classifies particulates derived from road transport with reference to their properties and sources of origin. The legal status of environmental protection against particulate matter is presented. The emissions of particulate matter with different properties from different road transport sources is examined based on the results of Poland’s inventory of pollutant emissions in the year 2018. This study was performed using areas with characteristic traffic conditions: inside and outside cities, as well as on highways and expressways. The effects of vehicles were classified according to Euro emissions standards into the categories relating to the emissions of different particulate matter types. The results obtained showed that technological progress in the automobile sector has largely contributed to a reduction in particulate matter emissions associated with engine exhaust gases, and that this has had slight effect on particulate matter emissions associated with the tribological processes of vehicles. The conclusion formed is that it is advisable to undertake work towards the control and reduction of road transport particulate matter emissions associated with the sources other than engine exhaust gases.


2021 ◽  
Vol 11 (9) ◽  
pp. 3831
Author(s):  
Han-Jung Kim ◽  
Dong-In Choi ◽  
Sang-Keun Sung ◽  
Su-Han Lee ◽  
Sang-Jin Kim ◽  
...  

Due to the increasing use of polypropylene-based nonwoven dust masks and air filters, environmental problems that occur due to the plastic pollution resulting from the disposal of these materials have also increased. Hence, an eco-friendly air filter based on PVA nanofibers (NFs) was fabricated by electrospinning on a nonwoven fabric, and its performance was evaluated as a filter capable of blocking or capturing particulate matter. The quality factor of the optimized PVA NF-based air filter was found to be 0.010606 Pa−1, which is lower than that of a HEPA filter (0.015394 Pa−1), but higher than that of a cabin air filter (0.010517 Pa−1) and a dust mask (0.009102 Pa−1). The contamination level of the PVA NF-based filter was analyzed by optical and structural analyses of the filter surface. Finally, the filter was soaked in water to selectively remove the contaminated PVA NF layer, and the remaining nonwoven fabric was able to be reused to make the filter.


2021 ◽  
pp. 101078
Author(s):  
Luiz C. Daemme ◽  
Renato Penteado ◽  
Rodrigo S. Ferreira ◽  
Marcelo R. Errera ◽  
Sergio M. Corrêa ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
Richard Viskup ◽  
Yana Vereshchaga ◽  
Anna Theresia Stadler ◽  
Theresa Roland ◽  
Christoph Wolf ◽  
...  

Pollutant emissions from vehicles form major sources of metallic nanoparticles entering the environment and surrounding atmosphere. In this research, we spectrochemically analyse the chemical composition of particle matter emissions from in-use diesel engine passenger vehicles. We extracted diesel particulate matter from the end part of the tail pipes of more than 70 different vehicles. In the laboratory, we used the high-resolution laser-induced breakdown spectroscopy (LIBS) spectrochemical analytical technique to sensitively analyse chemical elements in different DPM samples. We found that PM is composed of major, minor and trace chemical elements. The major compound in PM is not strictly carbon but also other adsorbed metallic nanoparticles such as iron, chromium, magnesium, zinc and calcium. Besides the major elements in DPM, there are also minor elements: silicon, nickel, titan, potassium, strontium, molybdenum and others. Additionally, in DPM are adsorbed atomic trace elements like barium, boron, cobalt, copper, phosphorus, manganese and platinum. All these chemical elements form the significant atomic composition of real PM from in-use diesel engine vehicles.


Nano Energy ◽  
2020 ◽  
Vol 78 ◽  
pp. 105357 ◽  
Author(s):  
Jilong Mo ◽  
Chenyuan Zhang ◽  
Yanxu Lu ◽  
Yanhua Liu ◽  
Ni Zhang ◽  
...  

2022 ◽  
Vol 115 ◽  
pp. 215-226
Author(s):  
Estela D. Vicente ◽  
Daniela Figueiredo ◽  
Cátia Gonçalves ◽  
Isabel Lopes ◽  
Helena Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document