Optimizing Irrigation Rates for Cotton Production in an Extremely Arid Area Using RZWQM2-Simulated Water Stress

2017 ◽  
Vol 60 (6) ◽  
pp. 2041-2052 ◽  
Author(s):  
Che Liu ◽  
Zhiming Qi ◽  
Zhe Gu ◽  
Dongwei Gui ◽  
Fanjiang Zeng

Abstract. Quantifying crop water demand and optimizing irrigation management practices are essential to water resource management in arid desert oases. Agricultural systems modeling can serve to develop a better understanding of the hydrologic cycle under various irrigation and climate conditions. RZWQM2-simulated water stress can be used as an indicator for irrigation scheduling but has not been applied to extremely arid zones. The objectives of this study were to (1) evaluate the performance of RZWQM2 in simulating soil moisture content and crop production in an extremely arid area and (2) develop an optimal irrigation strategy using model-simulated crop water stress. In this study, RZWQM2 hybridized with DSSAT was calibrated and validated against soil moisture, cottield, and development stage data collected from 2006 to 2013 in a flood-irrigated cotton field located in an extremely dry oasis in Cele, situated in Xinjiang, China (mean annual precipitation 37 mm). The simulated water balance was analyzed to determine the actual crop water consumption, crop water requirements, and seepage loss. Subsequently, an optimal irrigation scheme was developed using RZWQM2 by averting crop water stress from planting to 90% open boll. In comparison to similar studies, the accuracy of soil moisture content simulations was deemed acceptable based on percent bias (PBIAS < ±15%), coefficient of determination (0.378 = R2 = 0.636), Nash-Sutcliffe model efficiency (0.130 = ME = 0.557), and root mean squared error (0.022 m3 m-3 = RMSE = 0.031 m3 m-3). The model performed well in simulating cotton yield (R2 = 0.79, ME = 0.75, RMSE = 417.0 kg ha-1, and relative RMSE (rRMSE) = 12.5%). Model-simulated plant emergence dates were generally six days late because of the model’s lack of a component for mulching after seeding. Other phenological dates were closely matched, with a mean difference of ±4 days. On average, over eight years, the simulated growing season (planting to 90% open boll) water balance showed that the cotton crop consumed 532 mm year-1 of water under current irrigation practices, while 109 mm of water was lost through deep seepage. However, based on simulated PET, the crop water requirement was 641 mm year-1, suggesting water stress under current irrigation practices. Under these conditions, water stress occurred mainly during the late stages of cotton growth. The model-simulated actual evapotranspiration (ET) is comparable to the calculated ET using the water balance method, with percent error of -1.3%, indicating the rationality of applying model-simulated results in a water stress-based irrigation scheduling method. On average, the water stress-minimizing RZWQM2 irrigation schedule resulted in an apparent irrigation water savings of 32 mm year-1 (4.9%) and an annual yield increase of 527 kg ha-1 (16.3%). RZWQM2 was shown to be suitable for simulating soil hydrology and crop development in an agricultural system implemented in an extremely dry climate. Rescheduling of irrigation using a water stress-based method can be used to optimize irrigation water use and cotton production. Keywords: Cotton production, Optimum irrigation, RZWQM2, Soil water content, Water stress, WS-based regime.

1998 ◽  
Vol 2 (1) ◽  
pp. 129-136 ◽  
Author(s):  
J. W. Finch ◽  
R. J. Harding

Abstract. This paper compares direct measurements of evaporation with the values predicted for reference transpiration. The measurements of actual evaporation were made using an eddy correlation device on a grass field adjacent to the river Thames. Measurements of soil moisture and the driving meteorological variables were also made. The results showed that, during a period with minimal rainfall but no water stress, the cumulative values of reference transpiration compared very well with the cumulative measured evaporation and changes in soil moisture content. However, the values on specific days did not compare well. Following significant rainfall, the measured evaporation increased for a few days, probably due to evaporation of free water from the canopy or soil. Reference transpiration fell consistently below the measured evaporation once the soil moisture deficits exceeded 140 to 150 mm.


2013 ◽  
Vol 1 (No. 4) ◽  
pp. 127-138 ◽  
Author(s):  
Duffková Renata

In 2003–2005 in conditions of the moderately warm region of the Třeboň Basin (Czech Republic) the difference between canopy temperature (Tc) and air temperature at 2 m (Ta) was tested as an indicator of grass­land water stress. To evaluate water stress ten-minute averages of temperature difference Tc–Ta were chosen recorded on days without rainfall with intensive solar radiation from 11.00 to 14.00 CET. Water stress in the zone of the major portion of root biomass (0–0.2 m) in the peak growing season (minimum presence of dead plant residues) documented by a sudden increase in temperature difference, its value 5–12°C and unfavourable canopy temperatures due to overheating (> 30°C) was indicated after high values of suction pressure approach­ing the wilting point (1300 kPa) were reached. High variability of temperature difference in the conditions of sufficient supply of water to plants was explained by the amount of dead plant residues in canopy, value of va­pour pressure deficit (VPD), actual evapotranspiration rate (ETA) and soil moisture content. At the beginning of the growing season (presence of dead plant residues and voids) we proved moderately strong negative linear correlations of Tc–Ta with VPD and Tc–Ta with ETA rate and moderately strong positive linear correlations of ETA rate with VPD. In the period of intensive growth (the coverage of dead plant residues and voids lower than 10%) moderately strong linear correlations of Tc–Ta with VPD and multiple linear correlations of Tc–Ta with VPD and soil moisture content at a depth of 0.10–0.40 m were demonstrated.


2003 ◽  
Vol 129 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Paul D. Colaizzi ◽  
Edward M. Barnes ◽  
Thomas R. Clarke ◽  
Christopher Y. Choi ◽  
Peter M. Waller

1985 ◽  
Vol 15 (6) ◽  
pp. 1194-1195
Author(s):  
Robert S. McAlpine ◽  
Thomas G. Eiber

Weather data from Upsala and Atikokan, Ontario, were used to determine the Canadian Forest Fire Weather Index System values and to calculate the soil moisture for two soil types using the Thornthwaite water balance. The Duff Moisture Code and the Drought Code were found to give excellent correlations with the total soil moisture content under most weather patterns.


2020 ◽  
Author(s):  
Angela Morales Santos ◽  
Reinhard Nolz

<p>Sustainable irrigation water management is expected to accurately meet crop water requirements in order to avoid stress and, consequently, yield reduction, and at the same time avoid losses of water and nutrients due to deep percolation and leaching. Sensors to monitor soil water status and plant water status (in terms of canopy temperature) can help planning irrigation with respect to time and amounts accordingly. The presented study aimed at quantifying and comparing crop water stress of soybeans irrigated by means of different irrigation systems under subhumid conditions.</p><p>The study site was located in Obersiebenbrunn, Lower Austria, about 30 km east of Vienna. The region is characterized by a mean temperature of 10.5°C with increasing trend due to climate change and mean annual precipitation of 550 mm. The investigations covered the vegetation period of soybean in 2018, from planting in April to harvest in September. Measurement data included precipitation, air temperature, relative humidity and wind velocity. The experimental field of 120x120 m<sup>2</sup> has been divided into four sub-areas: a plot of 14x120 m<sup>2</sup> with drip irrigation (DI), 14x120 m<sup>2</sup> without irrigation (NI), 36x120 m<sup>2</sup> with sprinkler irrigation (SI), and 56x120 m<sup>2</sup> irrigated with a hose reel boom with nozzles (BI). A total of 128, 187 and 114 mm of water were applied in three irrigation events in the plots DI, SI and BI, respectively. Soil water content was monitored in 10 cm depth (HydraProbe, Stevens Water) and matric potential was monitored in 20, 40 and 60 cm depth (Watermark, Irrometer). Canopy temperature was measured every 15 minutes using infrared thermometers (IRT; SI-411, Apogee Instruments). The IRTs were installed with an inclination of 45° at 1.8 m height above ground. Canopy temperature-based water stress indices for irrigation scheduling have been successfully applied in arid environments, but their use is limited in humid areas due to low vapor pressure deficit (VPD). To quantify stress in our study, the Crop Water Stress Index (CWSI) was calculated for each plot and compared to the index resulting from the Degrees Above Canopy Threshold (DACT) method. Unlike the CWSI, the DACT method does not consider VPD to provide a stress index nor requires clear sky conditions. The purpose of the comparison was to revise an alternative method to the CWSI that can be applied in a humid environment.</p><p>CWSI behaved similar for the four sub-areas. As expected, CWSI ≥ 1 during dry periods (representing severe stress) and it decreased considerably after precipitation or irrigation (representing no stress). The plot with overall lower stress was BI, producing the highest yield of the four plots. Results show that DACT may be a more suitable index since all it requires is canopy temperature values and has strong relationship with soil water measurements. Nevertheless, attention must be paid when defining canopy temperature thresholds. Further investigations include the development and test of a decision support system for irrigation scheduling combining both, plant-based and soil water status indicators for water use efficiency analysis.</p>


2020 ◽  
pp. 1-13
Author(s):  
Christos Vamvakoulas ◽  
Ioannis Argyrokastritis ◽  
Panayiota Papastylianou ◽  
Yolanda Papatheohari ◽  
Stavros Alexandris

A two-year field experiment was conducted to determine the effect of water stress, including Crop Water Stress Index (CWSI), on seed, protein and oil yields, for two hybrids of drip-irrigated soybean in Central Greece. The experiment was set up as a split plot design with four replicates, five main plots (irrigation treatments) and two sub-plots (soybean hybrids, ‘PR91M10’ and ‘PR92B63’). Irrigation was applied to provide 100, 75, 50 and 25% of the crop evapotranspiration needs and 0% non-irrigated. Biomass weight, seed yield, oil and protein concentration were measured after harvest. To compute CWSI, lower and upper baselines were developed based on the canopy temperature measurements of I100 and I0 treatments, respectively. Deficit irrigation had a significant effect on biomass, seed, protein and oil yields. Hybrid PR92B63 was more responsive to irrigation and showed higher biomass, seed protein and oil yields, while the more sensitive hybrid PR91M10 had the ability to maintain productivity with increasing degrees of water stress. The rain-fed treatments significantly reduced biomass production and seed yield compared with the fully-irrigated ones. The highest and the lowest protein and oil yields were obtained in the I100 and I0 treatments respectively in both years and cultivars. Statistically significant exponential relationships were determined between CWSI and biomass, seed, protein and oil yields. Generally, CWSI could be used to measure crop water status and to improve irrigation scheduling of the crop and 0.10 for PR92B63 and 0.19 for PR91M10 could be offered as threshold values under the climatic conditions of the region.


Sign in / Sign up

Export Citation Format

Share Document