Influence of Particle Shape and Contact Parameters on DEM-Simulated Bulk Density of Wheat

2020 ◽  
Vol 63 (6) ◽  
pp. 1657-1672
Author(s):  
Marvin C. Petingco ◽  
Mark E. Casada ◽  
Ronaldo G. Maghirang ◽  
Oladiran O. Fasina ◽  
Zhengpu Chen ◽  
...  

HighlightsDecreasing aspect ratio and improved geometrical smoothness of particles increased DEM-predicted bulk density of wheat.Among the three particle models, the 5-sphere ellipsoidal particle was the best option to represent wheat particles, as indicated by the simulated bulk densities that best agreed with the experiments.Among the contact parameters, the wheat-to-wheat coefficient of static friction and wheat-surface coefficient of rolling friction had the greatest influence on simulated bulk density.Abstract. The discrete element method (DEM) has been shown to be an effective tool for simulating the behavior of granular material. The accuracy of simulations depends highly on the contact models, particle physical parameters, and contact parameters used. The objectives of this study were to determine the influence of particle shape and contact parameters on simulated wheat bulk density and to develop an effective wheat particle model for DEM simulation of filling a container using EDEM software. Grain characteristics, including single-kernel weight, kernel density, kernel dimensions, aspect ratio, and bulk density, were determined for three size fractions of wheat used in the experiments. Three categories of particle models (5-sphere pseudo-ellipsoidal, 7-sphere pseudo-ellipsoidal, and ASG-generated) with varying aspect ratios and geometrical smoothness were tested in the simulations. Results showed that DEM-simulated bulk density of wheat increased with lower aspect ratio and greater geometrical smoothness of pseudo-ellipsoidal particles (7-sphere versus 5-sphere). Increasing the number of spheres to approximately 30 for better representation of wheat kernel shape, using ASG-generated particles, did not reproduce the trend of greater simulated bulk density seen in the experiments. Among the six contact parameters, the wheat-wheat coefficient of static friction and wheat-surface coefficient of rolling friction had the most significant effect on the simulated bulk density. Among the different sets of particle models, the 5-sphere pseudo-ellipsoidal particles, having aspect ratios close to that of wheat kernels in each size fraction, were found to be the most practical and appropriate particle model for use in DEM simulation of wheat bulk density. This study contributes to better understanding of the influence of particle shape and contact parameters on DEM-simulated bulk density and provides a calibrated particle model for use in simulating container filling operations. Keywords: Bulk density, Contact parameters, DEM, Particle shape, Wheat.

2017 ◽  
Vol 34 (12) ◽  
pp. 2569-2587 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Carl G. Schmitt ◽  
Maximilian Maahn ◽  
Gijs de Boer

AbstractA remote sensing approach to retrieve the degree of nonsphericity of ice hydrometeors using scanning polarimetric Ka-band radar measurements from a U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program cloud radar operated in an alternate transmission–simultaneous reception mode is introduced. Nonsphericity is characterized by aspect ratios representing the ratios of particle minor-to-major dimensions. The approach is based on the use of a circular depolarization ratio (CDR) proxy reconstructed from differential reflectivity ZDR and copolar correlation coefficient ρhυ linear polarization measurements. Essentially combining information contained in ZDR and ρhυ, CDR-based retrievals of aspect ratios are fairly insensitive to hydrometeor orientation if measurements are performed at elevation angles of around 40°–50°. The suggested approach is applied to data collected using the third ARM Mobile Facility (AMF3), deployed to Oliktok Point, Alaska. Aspect ratio retrievals were also performed using ZDR measurements that are more strongly (compared to CDR) influenced by hydrometeor orientation. The results of radar-based retrievals are compared with in situ measurements from the tethered balloon system (TBS)-based video ice particle sampler and the ground-based multiangle snowflake camera. The observed ice hydrometeors were predominantly irregular-shaped ice crystals and aggregates, with aspect ratios varying between approximately 0.3 and 0.8. The retrievals assume that particle bulk density influencing (besides the particle shape) observed polarimetric variables can be deduced from the estimates of particle characteristic size. Uncertainties of CDR-based aspect ratio retrievals are estimated at about 0.1–0.15. Given these uncertainties, radar-based retrievals generally agreed with in situ measurements. The advantages of using the CDR proxy compared to the linear depolarization ratio are discussed.


Author(s):  
P. C. Vengaiah ◽  
S. Kaleemullah ◽  
M. Madhava ◽  
A. Mani ◽  
B. Sreekanth

Some physical properties of palmyrah fruit were investigated in this study. The average values of major, medium, minor and geometric mean diameters of fresh whole palmyrah fruit were 11.54,10.45, 9.85 and 10.64 cm respectively at 47.34 % (w.b) moisture content whereas that of palmyrah nut were 8.59, 7.35, 4.99 and 6.79 cm respectively at 8% (w.b) moisture content. Sphericity, surface area and aspect ratio were found to be 91.94%, 359.17 cm2 and 0.90 for fruit and whereas that of nut were 79.19%, 145.16 cm2 and 0.86 respectively. The average mass of the individual palmyrah fruit and nut was 927.78 and 248.10 g whereas bulk density was 525.92 and 693.0 kg/m3 respectively. The coefficient of static friction on mild steel, glass and plywood surfaces were 0.27, 0.21 and 0.25 for palmyrah fruit and 0.36, 0.28 and 0.27 for nut respectively. The angle of repose of palmyrah fruit and nut were 30.77 and 44.03 respectively.


2020 ◽  
Vol 59 (9) ◽  
pp. 1503-1517
Author(s):  
Sergey Y. Matrosov ◽  
Alexander V. Ryzhkov ◽  
Maximilian Maahn ◽  
Gijs de Boer

AbstractA polarimetric radar–based method for retrieving atmospheric ice particle shapes is applied to snowfall measurements by a scanning Ka-band radar deployed at Oliktok Point, Alaska (70.495°N, 149.883°W). The mean aspect ratio, which is defined by the hydrometeor minor-to-major dimension ratio for a spheroidal particle model, is retrieved as a particle shape parameter. The radar variables used for aspect ratio profile retrievals include reflectivity, differential reflectivity, and the copolar correlation coefficient. The retrievals indicate that hydrometeors with mean aspect ratios below 0.2–0.3 are usually present in regions with air temperatures warmer than approximately from −17° to −15°C, corresponding to a regime that has been shown to be favorable for growth of pristine ice crystals of planar habits. Radar reflectivities corresponding to the lowest mean aspect ratios are generally between −10 and 10 dBZ. For colder temperatures, mean aspect ratios are typically in a range between 0.3 and 0.8. There is a tendency for hydrometeor aspect ratios to increase as particles transition from altitudes in the temperature range from −17° to −15°C toward the ground. This increase is believed to result from aggregation and riming processes that cause particles to become more spherical and is associated with areas demonstrating differential reflectivity decreases with increasing reflectivity. Aspect ratio retrievals at the lowest altitudes are consistent with in situ measurements obtained using a surface-based multiangle snowflake camera. Pronounced gradients in particle aspect ratio profiles are observed at altitudes at which there is a change in the dominant hydrometeor species, as inferred by spectral measurements from a vertically pointing Doppler radar.


2021 ◽  
Vol 37 (4) ◽  
pp. 605-614
Author(s):  
Lingxin Geng ◽  
Jiewen Zuo ◽  
Fuyun Lu ◽  
Xin Jin ◽  
Chenglong Sun ◽  
...  

Highlights The static friction coefficient and rolling friction coefficient of oat seeds were calibrated by the discrete element method. Two representative oat varieties were selected. The hollow cylinder method and sidewall collapse method were used together to reduce the test error. Abstract . Hulless and shelled oat are two types of oat with major differences in physical appearance. To study the contact parameters between the two different oat seed types, these parameters were delineated with the discrete element method and graphic image processing technology. Using plexiglass as the contact material, the experiments used two different angle of repose measurement methods—hollow cylinder and collapse sidewall devices, to perform bench and simulation experiments on the two different oats. Under different measurement methods, bench experiments measured the angles of repose of the two oat seed types at 33.19°, 33.82° and 22.45°, 23.57°; the static friction coefficient and rolling friction coefficient were the experimental factors, and the angle of repose was the experimental indicator in the simulation. The steepest climbing experiment determined the optimal range of the experimental factor, and the regression equation between the static friction coefficient, rolling friction coefficient and angle of repose was established by a quadratic orthogonal rotation combination experiment. Finally, the angles of repose measured by the bench experiment with the two different measurement methods were treated as target values, the coefficient of static friction and the coefficient of rolling friction were solved; the coefficient of static friction between hulless oats was 0.36, and the coefficient of rolling friction between hulless oats was 0.052; the coefficient of static friction between shelled oats was 0.24, and the coefficient of rolling friction between shelled oats was 0.036. The obtained contact parameters between seeds were input into EDEM, the simulation and bench experiment results were verified. The difference between the simulation results and the actual values was within 3%. The angle of repose of oats after calibration was close to the actual situation, and the calibration results had high reliability and provided a referencefor the measurement of contact parameters between other agricultural crop seeds. Keywords: Calibration, Contact parameters, Discrete element method, Oat.


2019 ◽  
Vol 76 (1) ◽  
pp. 305-332 ◽  
Author(s):  
Edwin L. Dunnavan ◽  
Zhiyuan Jiang

Abstract The orientation of falling ice particles directly influences estimates of microphysical and radiative bulk quantities as well as in situ retrievals of size, shape, and mass. However, retrieval efforts and bulk calculations often incorporate very basic orientations or ignore these effects altogether. To address this deficiency, this study develops a general method for projecting bulk distributions of particle shape for arbitrary orientations. The Amoroso distribution provides the most general bulk aspect ratio distribution for gamma-distributed particle axis lengths. The parameters that govern the behavior of this aspect ratio distribution depend on the assumed relationship between mass, maximum dimension, and aspect ratio. Individual spheroidal geometry allows for eccentricity quantities to linearly map onto ellipse analogs, whereas aspect ratio quantities map nonlinearly. For particles viewed from their side, this analytic distinction leads to substantially larger errors in projected aspect ratio than for projected eccentricity. Distribution transformations using these mapping equations and numerical integration of projection kernels show that both truncation of size distributions and changes in Gaussian dispersion can alter the modality and shape of projection distributions. As a result, the projection process can more than triple the relative entropy between the spheroidal and projection distributions for commonly assumed model and orientation parameters. This shape uncertainty is maximized for distributions of highly eccentric particles and for particles like aggregates that are thought to fall with large canting-angle deviations. As a result, the methods used to report projected aspect ratios and the corresponding values should be questioned.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 605
Author(s):  
Xiulong Cao ◽  
Zehua Li ◽  
Hongwei Li ◽  
Xicheng Wang ◽  
Xu Ma

The discrete element method (DEM) for modeling the behavior of particulate material is highly dependent on the use of appropriate and accurate parameters. In this study, a seed metering DEM simulation was used to measure, calibrate, and verify the physical and interactional parameters of rapeseed. The coefficients of restitution and static friction between rapeseeds and three common materials (aluminum alloy, acrylic, and high-density polyethylene) were measured using free drop and sliding ramp tests, respectively. The angle of repose was determined using a hollow cylinder experiment, which was duplicated using a DEM simulation, to examine the effects of static and rolling friction coefficients on the angle of repose. Response surface optimization was performed to determine the optimized model parameters using a Box–Behnken design test. A metering device was made with three materials, and rapeseed seeding was simulated at different working speeds to verify the calibrated parameters. The validation results showed that the relative errors between the seed metering model and experiments for the single qualified seeding, missed seeding, and multiple seeding rates were −0.15%, 3.29%, and 5.37%, respectively. The results suggest that the determined physical and interactional parameters of rapeseed can be used as references for future DEM simulations.


2020 ◽  
Vol 61 (2) ◽  
pp. 77-86 ◽  
Author(s):  
Fei Liu ◽  
Dapeng Li ◽  
Tao Zhang ◽  
Zhen Lin

An optimization method based on a regression model was established by combining physical experiments, and an extended distinct element method (EDEM) simulation was proposed to address the difficult problem of obtaining the contact characteristic parameters used in the discrete element method (DEM) model of quinoa grains and for calibrating the parameters of the quinoa DEM model. The Plackett-Burman test was designed using Design-Expert software to screen the parameters of the quinoa DEM model, and the quinoa-quinoa static friction coefficient, quinoa-polylactic acid (PLA) static friction coefficient and quinoa-quinoa rolling friction coefficient were found to have significant effects on the repose angle. The optimal value intervals of the parameters with a significant impact on the repose angle were determined using the steepest ascent test. A regression model of the repose angle and the parameters with a significant impact on the repose angle was then established with the Box-Behnken design and further optimized, and the combination of optimal parameters was as follows: 0.26 for the quinoa-quinoa static friction coefficient (E), 0.38 for the quinoa-PLA static friction coefficient (F), and 0.08 for the quinoa-quinoa rolling friction coefficient (G). Lastly, the optimal combination was used in the verification performed by the DEM simulation, and the error between the simulated repose angle and the target repose angle was 0.86%. These findings indicated that it was feasible to use the response surface optimization to calibrate the parameters required for quinoa DEM simulation and that the combination of optimal parameters can provide a reference for selecting the characteristic contact parameters used in quinoa DEM simulation.


2021 ◽  
pp. 175-184
Author(s):  
Bing Xu ◽  
Yanqing Zhang ◽  
Qingliang Cui ◽  
Shaobo Ye ◽  
Fan Zhao

In view of the lack of seeds contact parameters that can be used as a reference for the design of key mechanical components such as buckwheat planting, harvesting, and processing, this study combines simulation optimization design experiments and physical experiments to calibrate the parameters of simulated discrete element of buckwheat seeds. The non-spherical particle model of buckwheat seeds was established using the automatic filling method, and the simulation accumulating test and physical accumulating test were carried out using the bottomless conical cylinder lifting method; the repose angle of buckwheat seeds was taken as the response value, and the initial parameters were screened for significance based on the Plackett-Burman test; and a second-order regression model of the error value for the repose angle and the significance parameter was established based on the steepest climb test and Box-Behnken test. On this basis, the minimum error value of the repose angle was used as the goal to optimize the significance parameter, the optimal combination of contact parameters was obtained, and parameter validation tests were carried out. The significance screening test showed that the buckwheat-buckwheat static friction coefficient, the buckwheat-stainless steel rolling friction coefficient, and the buckwheat-stainless steel restitution coefficient had significant effects on the repose angle of buckwheat (P<0.05). The optimization test showed that the buckwheat-buckwheat static friction coefficient was 0.510, the buckwheat-stainless steel rolling friction coefficient was 0.053, and the buckwheat-stainless steel restitution coefficient was 0.492. The validation test showed that the repose angle of buckwheat seeds under such parameter was 25.39°, and the error with the repose angle of the physical test was 0.55%, which indicated that the optimal parameter combination was reliable. This study could provide a seed model and simulation contact parameters for the research and development of buckwheat sowing, threshing and hulling machinery.


2015 ◽  
Vol 32 (5) ◽  
pp. 865-879 ◽  
Author(s):  
Sergey Y. Matrosov

AbstractInformation on ice cloud particle nonsphericity is important for many practical applications ranging from modeling the cloud radiation impact to remote sensing of hydrometeor microphysical properties. Scanning cloud radars, which often measure depolarization ratio as a sole polarization variable, can provide a means for retrieving this information. The applicability of a spheroidal particle model (i.e., a regular ellipsoid that has two principal axes of the same length) is evaluated for describing depolarization properties of ice particles. It is shown that this simple model, which uses an aspect ratio as a single parameter characterizing particle nonsphericity, explains reasonably well the scatter of slant 45° linear depolarization ratio (SLDR) measurements versus direct estimates of the zenith direction backscatter enhancement observed during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) with the scanning W-band cloud radar (SWACR). Observed SLDR elevation angle patterns are also approximated reasonably well by this shape model. It is suggested that an SLDR difference between slant and zenith radar pointing can be used for prospective remote sensing methods of inferring particle aspect ratio from cloud radar depolarization measurements. Depending on mass–size relations, the value of this difference corresponding to median zenith reflectivity enhancement observed during StormVEx relates to aspect ratios of about 0.5 ± 0.2, which generally agrees with typical aspect ratios of ice particles. Expected aspect ratio retrieval uncertainties within the spheroidal shape model and the use of different types of radar depolarization ratio measurements are discussed. A correction for estimated zenith direction reflectivity enhancements due to particle nonsphericity is suggested.


2021 ◽  
Vol 2 (3) ◽  
pp. 501-515
Author(s):  
Rajib Kumar Biswas ◽  
Farabi Bin Ahmed ◽  
Md. Ehsanul Haque ◽  
Afra Anam Provasha ◽  
Zahid Hasan ◽  
...  

Steel fibers and their aspect ratios are important parameters that have significant influence on the mechanical properties of ultrahigh-performance fiber-reinforced concrete (UHPFRC). Steel fiber dosage also significantly contributes to the initial manufacturing cost of UHPFRC. This study presents a comprehensive literature review of the effects of steel fiber percentages and aspect ratios on the setting time, workability, and mechanical properties of UHPFRC. It was evident that (1) an increase in steel fiber dosage and aspect ratio negatively impacted workability, owing to the interlocking between fibers; (2) compressive strength was positively influenced by the steel fiber dosage and aspect ratio; and (3) a faster loading rate significantly improved the mechanical properties. There were also some shortcomings in the measurement method for setting time. Lastly, this research highlights current issues for future research. The findings of the study are useful for practicing engineers to understand the distinctive characteristics of UHPFRC.


Sign in / Sign up

Export Citation Format

Share Document