Calibration and Experimental Validation of Contact Parameters for Oat Seeds for Discrete Element Method Simulations

2021 ◽  
Vol 37 (4) ◽  
pp. 605-614
Author(s):  
Lingxin Geng ◽  
Jiewen Zuo ◽  
Fuyun Lu ◽  
Xin Jin ◽  
Chenglong Sun ◽  
...  

Highlights The static friction coefficient and rolling friction coefficient of oat seeds were calibrated by the discrete element method. Two representative oat varieties were selected. The hollow cylinder method and sidewall collapse method were used together to reduce the test error. Abstract . Hulless and shelled oat are two types of oat with major differences in physical appearance. To study the contact parameters between the two different oat seed types, these parameters were delineated with the discrete element method and graphic image processing technology. Using plexiglass as the contact material, the experiments used two different angle of repose measurement methods—hollow cylinder and collapse sidewall devices, to perform bench and simulation experiments on the two different oats. Under different measurement methods, bench experiments measured the angles of repose of the two oat seed types at 33.19°, 33.82° and 22.45°, 23.57°; the static friction coefficient and rolling friction coefficient were the experimental factors, and the angle of repose was the experimental indicator in the simulation. The steepest climbing experiment determined the optimal range of the experimental factor, and the regression equation between the static friction coefficient, rolling friction coefficient and angle of repose was established by a quadratic orthogonal rotation combination experiment. Finally, the angles of repose measured by the bench experiment with the two different measurement methods were treated as target values, the coefficient of static friction and the coefficient of rolling friction were solved; the coefficient of static friction between hulless oats was 0.36, and the coefficient of rolling friction between hulless oats was 0.052; the coefficient of static friction between shelled oats was 0.24, and the coefficient of rolling friction between shelled oats was 0.036. The obtained contact parameters between seeds were input into EDEM, the simulation and bench experiment results were verified. The difference between the simulation results and the actual values was within 3%. The angle of repose of oats after calibration was close to the actual situation, and the calibration results had high reliability and provided a referencefor the measurement of contact parameters between other agricultural crop seeds. Keywords: Calibration, Contact parameters, Discrete element method, Oat.

2020 ◽  
Vol 61 (2) ◽  
pp. 77-86 ◽  
Author(s):  
Fei Liu ◽  
Dapeng Li ◽  
Tao Zhang ◽  
Zhen Lin

An optimization method based on a regression model was established by combining physical experiments, and an extended distinct element method (EDEM) simulation was proposed to address the difficult problem of obtaining the contact characteristic parameters used in the discrete element method (DEM) model of quinoa grains and for calibrating the parameters of the quinoa DEM model. The Plackett-Burman test was designed using Design-Expert software to screen the parameters of the quinoa DEM model, and the quinoa-quinoa static friction coefficient, quinoa-polylactic acid (PLA) static friction coefficient and quinoa-quinoa rolling friction coefficient were found to have significant effects on the repose angle. The optimal value intervals of the parameters with a significant impact on the repose angle were determined using the steepest ascent test. A regression model of the repose angle and the parameters with a significant impact on the repose angle was then established with the Box-Behnken design and further optimized, and the combination of optimal parameters was as follows: 0.26 for the quinoa-quinoa static friction coefficient (E), 0.38 for the quinoa-PLA static friction coefficient (F), and 0.08 for the quinoa-quinoa rolling friction coefficient (G). Lastly, the optimal combination was used in the verification performed by the DEM simulation, and the error between the simulated repose angle and the target repose angle was 0.86%. These findings indicated that it was feasible to use the response surface optimization to calibrate the parameters required for quinoa DEM simulation and that the combination of optimal parameters can provide a reference for selecting the characteristic contact parameters used in quinoa DEM simulation.


2021 ◽  
pp. 175-184
Author(s):  
Bing Xu ◽  
Yanqing Zhang ◽  
Qingliang Cui ◽  
Shaobo Ye ◽  
Fan Zhao

In view of the lack of seeds contact parameters that can be used as a reference for the design of key mechanical components such as buckwheat planting, harvesting, and processing, this study combines simulation optimization design experiments and physical experiments to calibrate the parameters of simulated discrete element of buckwheat seeds. The non-spherical particle model of buckwheat seeds was established using the automatic filling method, and the simulation accumulating test and physical accumulating test were carried out using the bottomless conical cylinder lifting method; the repose angle of buckwheat seeds was taken as the response value, and the initial parameters were screened for significance based on the Plackett-Burman test; and a second-order regression model of the error value for the repose angle and the significance parameter was established based on the steepest climb test and Box-Behnken test. On this basis, the minimum error value of the repose angle was used as the goal to optimize the significance parameter, the optimal combination of contact parameters was obtained, and parameter validation tests were carried out. The significance screening test showed that the buckwheat-buckwheat static friction coefficient, the buckwheat-stainless steel rolling friction coefficient, and the buckwheat-stainless steel restitution coefficient had significant effects on the repose angle of buckwheat (P<0.05). The optimization test showed that the buckwheat-buckwheat static friction coefficient was 0.510, the buckwheat-stainless steel rolling friction coefficient was 0.053, and the buckwheat-stainless steel restitution coefficient was 0.492. The validation test showed that the repose angle of buckwheat seeds under such parameter was 25.39°, and the error with the repose angle of the physical test was 0.55%, which indicated that the optimal parameter combination was reliable. This study could provide a seed model and simulation contact parameters for the research and development of buckwheat sowing, threshing and hulling machinery.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 605
Author(s):  
Xiulong Cao ◽  
Zehua Li ◽  
Hongwei Li ◽  
Xicheng Wang ◽  
Xu Ma

The discrete element method (DEM) for modeling the behavior of particulate material is highly dependent on the use of appropriate and accurate parameters. In this study, a seed metering DEM simulation was used to measure, calibrate, and verify the physical and interactional parameters of rapeseed. The coefficients of restitution and static friction between rapeseeds and three common materials (aluminum alloy, acrylic, and high-density polyethylene) were measured using free drop and sliding ramp tests, respectively. The angle of repose was determined using a hollow cylinder experiment, which was duplicated using a DEM simulation, to examine the effects of static and rolling friction coefficients on the angle of repose. Response surface optimization was performed to determine the optimized model parameters using a Box–Behnken design test. A metering device was made with three materials, and rapeseed seeding was simulated at different working speeds to verify the calibrated parameters. The validation results showed that the relative errors between the seed metering model and experiments for the single qualified seeding, missed seeding, and multiple seeding rates were −0.15%, 3.29%, and 5.37%, respectively. The results suggest that the determined physical and interactional parameters of rapeseed can be used as references for future DEM simulations.


2020 ◽  
Author(s):  
Jinrong CHAI ◽  
Shifeng WANG ◽  
Zihao ZHOU ◽  
Guohua LI ◽  
Xunan LIU

Abstract The friction coefficient of coal is the main factor influencing the results of discrete element simulation. In this study, the friction coefficient of coal was determined using a self-made testing instrument for measuring the static friction coefficient and an automatic cylinder lifting device on the basis of discrete element simulation, image processing, and orthogonal testing. The correlations between the angle of repose of coal particles, the rolling friction coefficient between coal particles, and the rolling friction coefficient between the coal particles and stainless steel were evaluated by linear regression analysis. Results indicated that the dependent variable (angle of repose of coal particles) was linearly correlated to the two independent variables (rolling friction factor between the coal particles, as well as the rolling friction factor between the coal and the stainless steel). The angle of repose of the coal particles was largely affected by the rolling friction coefficient between the coal particles but not by the rolling friction coefficient between the coal particle and stainless steel. Moreover, the static friction coefficient between the coal particles was 0.53, and that between the coal particle and the stainless steel was 0.38. The rolling friction coefficient between the coal particles was 0.048, and that between the coal particles and the stainless steel was 0.03. These friction coefficients were used to simulate the bottomless cylinder test of the coal particles. The angle of repose in the simulation test was 30.77°, whereas that in the real test was 31.47°; the relative error was 2.22%. Therefore, no significant difference in the results was indicated between the simulation test and the real test, verifying the effectiveness of the method used to determine friction coefficients. The aforementioned technique can be applied to determine the friction coefficient of lump coal particles.


2011 ◽  
Vol 2-3 ◽  
pp. 894-899
Author(s):  
Qin Liang Li ◽  
Bin Zhao ◽  
Bo Wang ◽  
Bang Chun Wen

Discrete element method (DEM) is applied to study the granular accumulation problem. Using Herz-Mindlin (no slip) model to simulate particles and container model is also established by software. When the container elevates, the process of granular falling and collision can be ob-served. Detailed analysis of that the impact of static and rolling friction coefficient for particles - particles, particles - flat on angle of repose is accomplished. The variation law is also further val-idated from the energy point of view. The results show that rolling friction has a greater impact on angle of repose than static friction, and rolling friction coefficient among particles play the more prominent role in the two kinds of rolling friction. The research method and results provide a the-oretical reference for the granular movement and DEM analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Huazhi Chen ◽  
Shengyuan Jiang ◽  
Rongkai Liu ◽  
Weiwei Zhang

Particles can move directionally in a trough with finlike asperities under longitudinal vibrations. Here, we present an analysis of the particle conveyance mechanism and the influence of the asperity shape on the particle conveyance capacity by employing a numerical simulation based on the discrete element method (DEM). A dynamic-static matching method is proposed to characterize the three microcontact parameters in the simulation: the restitution coefficient, static friction coefficient, and rolling friction coefficient. The simulation shows that the asymmetric force induced by the finlike asperities and its cumulative effect over time lead to the particle directional conveyance. The conveyance velocity increases with increasing vibration time and is related to the median coordination number. The asperity height and slope inclination angles determine the trough shape and distance between two asperities directly. An undersized or oversized distance reduces the steady conveyance velocity. We find the optimal distance to be between one and two particle diameters.


2021 ◽  
Vol 3 (4) ◽  
pp. 894-906
Author(s):  
Hangqi Li ◽  
Guochen Zhang ◽  
Xiuchen Li ◽  
Hanbing Zhang ◽  
Qian Zhang ◽  
...  

The Manila Clam is an important economic shellfish in China’s seafood industry. In order to improve the design of juvenile Manila Clam seeding equipment, a juvenile clam discrete element method (DEM) particle shape was established, which is based on 3D scanning and EDEM software. The DEM contact parameters of clam-stainless steel, and clam-acrylic were calibrated by combining direct measurements and test simulations (slope sliding and dropping). Then, clam DEM simulation and realistic seeding tests were carried out on a seeding wheel at different rotational speeds. The accuracy of the calibrated clam DEM model was evaluated in a clam seeding verification test by comparing the average error of the variation coefficient between the realistic and simulated seeding tests. The results showed that: (a) the static friction coefficients of clam-acrylic and clam-stainless steel were 0.31 and 0.23, respectively; (b) the restitution coefficients of clam-clam, clam-acrylic, and clam-stainless steel were 0.32, 0.48, and 0.32, respectively. Furthermore, the results of the static repose angle from response surface tests showed that when the contact wall was acrylic, the coefficient rolling friction and static friction of clam-clam were 0.17 and 1.12, respectively, and the coefficient rolling friction of clam-acrylic was 0.20. When the contact wall was formed of stainless steel, the coefficient rolling friction and static friction of clam-clam were 0.33 and 1.25, respectively, and the coefficient rolling friction of clam-stainless steel was 0.20. The results of the verification test showed that the average error between the realistic and simulated value was <5.00%. Following up from these results, the clam DEM model was applied in a clam seeding simulation.


2016 ◽  
Vol 61 (4) ◽  
pp. 1795-1804
Author(s):  
Heng Zhou ◽  
Zhiguo Luo ◽  
Tao Zhang ◽  
Yang You ◽  
Haifeng Li ◽  
...  

Abstract Rolling friction representing the energy dissipation mechanism with the elastic deformation at the contact point could act directly on particle percolation. The present investigation intends to elucidate the influence of rolling friction coefficient on inter-particle percolation in a packed bed by discrete element method (DEM). The results show that the vertical velocity of percolating particles decreases with increasing the rolling friction coefficient. With the increase of rolling friction coefficient, the transverse dispersion coefficient decreases, but the longitudinal dispersion coefficient increases. Packing height has a limited effect on the transverse and longitudinal dispersion coefficient. In addition, with the increase of size ratio of bed particles to percolation ones, the percolation velocity increases. The transverse dispersion coefficient increases with the size ratio before D/d<14. And it would keep constant when the size ratio is greater than 14. The longitudinal dispersion coefficient decreases when the size ratio increases up to D/d=14, then increases with the increase of the size ratio. External forces affect the percolation behaviours. Increasing the magnitude of the upward force (e.g. from a gas stream) reduces the percolation velocity, and decreases the dispersion coefficient.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3350
Author(s):  
Ping He ◽  
Yiwei Fan ◽  
Banglong Pan ◽  
Yinfeng Zhu ◽  
Jing Liu ◽  
...  

The discrete element method (DEM) is commonly used to study various powders in motion during transportation, screening, mixing, etc.; this requires several microscopic parameters to characterize the complex mechanical behavior of the particles. Herein, a new discrete element parameter calibration method is proposed to calibrate the ultrafine agglomerated powder (recycled polyurethane powder). Optimal Latin hypercube sampling and virtual simulation experiments were conducted using the commercial DEM software; the microscopic variables included the static friction coefficient between the particles, collision recovery coefficient, Johnson–Kendall–Roberts surface energy, static friction coefficient between the particles and wall, and collision recovery coefficient. A predictive model based on genetic-algorithm-optimized feedforward neural network (back propagation) was developed to calibrate the microscopic DEM simulation parameters. The cycle search algorithm and mean-shift cluster analysis were used to confirm the input parameters’ range by comparing the mean value of the dynamic angle of repose measured via the batch accumulation test. These parameters were verified by the baffle lifting method and the rotating drum method. This calibration method, once successfully developed, will be suitable for use in a variety of fine viscous powder dynamic flow conditions.


2020 ◽  
Vol 63 (1) ◽  
pp. 189-198
Author(s):  
Leno J. Guzman ◽  
Ying Chen ◽  
Hubert Landry

Abstract. The development of highly efficient seed metering is required to meet the demands of modern seeding equipment. The discrete element method (DEM) was used to simulate metering of seeds with a fluted roller meter. This approach was chosen due to its capability to accurately represent granular material flow. The contact model selected for the DEM simulation was the linear rolling resistance model. Angle of repose experimental tests and simulations were performed to calibrate the rolling friction coefficient for peas. The calibrated value for the rolling friction coefficient was 0.016. A 192 mm cross-section of an air cart seed roller and housing was defined as the domain of the simulation. Sensitivity analysis showed that simulated mass flow rates were not sensitive to the selected damping coefficients (0.2, 0.5, and 0.8). Sensitivity indicator values varied between -0.049 and 0.088 for the range of damping coefficients and roller speeds studied. The simulated geometry of the seed meter and housing resulted in a steady flow of seeds, with discharged mass increasing linearly. The simulated mass flow rates were 34.0, 72.3, 110.4, 147.3, and 182.0 g s-1 for roller speeds of 10, 20, 30, 40, and 50 rpm, respectively. An experiment was performed to validate the simulation results. The predicted mass flow rate values of the simulation were within 10 g s-1 of the experimental results, with the largest relative error being 16.5%. Keywords: DEM, Damping, Metering, Peas, Rolling friction coefficient, Seed, Simulation.


Sign in / Sign up

Export Citation Format

Share Document