scholarly journals Nonlinear dynamics of a bladed dual-shaft

Author(s):  
Marion Gruin ◽  
Fabrice Thouverez ◽  
Laurent Blanc ◽  
Pierrick Jean

In the industrial context of performance improvement of dual-shaft aircraft engines, experimental results demonstrate how important it is to consider the influence of the dynamics of the high pressure (HP) shaft on the response of the bladed disk located on the low pressure (LP) shaft. Indeed, this coupling seems to play an important role in the design purposes in rotating machinery industry as it can have a significant impact on the dynamic behaviour of turbomachines. The model developed here consists of a HP shaft and a LP bladed shaft connected by an intershaft bearing. Nonlinear features of this intershaft bearing require the development of specific nonlinear algorithms. Thus, this paper aims at coupling the two modelling levels in order to grasp the nonlinear vibratory phenomena of a bladed dual-shaft under unbalances.

2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


2017 ◽  
Vol 123 (2) ◽  
pp. 344-351 ◽  
Author(s):  
Luiz Eduardo Virgilio Silva ◽  
Renata Maria Lataro ◽  
Jaci Airton Castania ◽  
Carlos Alberto Aguiar Silva ◽  
Helio Cesar Salgado ◽  
...  

Heart rate variability (HRV) has been extensively explored by traditional linear approaches (e.g., spectral analysis); however, several studies have pointed to the presence of nonlinear features in HRV, suggesting that linear tools might fail to account for the complexity of the HRV dynamics. Even though the prevalent notion is that HRV is nonlinear, the actual presence of nonlinear features is rarely verified. In this study, the presence of nonlinear dynamics was checked as a function of time scales in three experimental models of rats with different impairment of the cardiac control: namely, rats with heart failure (HF), spontaneously hypertensive rats (SHRs), and sinoaortic denervated (SAD) rats. Multiscale entropy (MSE) and refined MSE (RMSE) were chosen as the discriminating statistic for the surrogate test utilized to detect nonlinearity. Nonlinear dynamics is less present in HF animals at both short and long time scales compared with controls. A similar finding was found in SHR only at short time scales. SAD increased the presence of nonlinear dynamics exclusively at short time scales. Those findings suggest that a working baroreflex contributes to linearize HRV and to reduce the likelihood to observe nonlinear components of the cardiac control at short time scales. In addition, an increased sympathetic modulation seems to be a source of nonlinear dynamics at long time scales. Testing nonlinear dynamics as a function of the time scales can provide a characterization of the cardiac control complementary to more traditional markers in time, frequency, and information domains. NEW & NOTEWORTHY Although heart rate variability (HRV) dynamics is widely assumed to be nonlinear, nonlinearity tests are rarely used to check this hypothesis. By adopting multiscale entropy (MSE) and refined MSE (RMSE) as the discriminating statistic for the nonlinearity test, we show that nonlinear dynamics varies with time scale and the type of cardiac dysfunction. Moreover, as complexity metrics and nonlinearities provide complementary information, we strongly recommend using the test for nonlinearity as an additional index to characterize HRV.


2002 ◽  
Vol 124 (3) ◽  
pp. 566-570 ◽  
Author(s):  
R. L. Fittro ◽  
C. R. Knospe

Many important industrial problems in the control of rotating machinery with active magnetic bearings concern the minimization of the rotor vibration response to poorly characterized disturbances at a single or several shaft locations, these typically not corresponding to those of a sensor or actuator. Herein, we examine experimental results of a multivariable controller obtained via μ synthesis with a laboratory test rig. These indicate that a significant improvement in performance can be obtained with a multivariable μ controller over that achieved with an optimal decentralized PD controller.


Author(s):  
Roger L. Fittro ◽  
Carl R. Knospe

Many important industrial problems in the control of rotating machinery with active magnetic bearings concern the minimization of the rotor vibration response to poorly characterized disturbances at a single or several shaft locations, these typically not corresponding to those of a sensor or actuator. Herein, we examine experimental results of a multivariable controller obtained via μ synthesis with a laboratory test rig. These indicate that a significant improvement in performance can be obtained with a multivariable μ controller over that achieved with an optimal decentralized PD controller.


1999 ◽  
Vol 13 (29n31) ◽  
pp. 3623-3625 ◽  
Author(s):  
K. Amaya ◽  
K. Shimizu ◽  
M. I. Eremets

Techniques of producing ultra-high pressure at very low temperature and measuring method of electrical resistance and magnetization of samples confirmed in the used diamond anvil ceil (DAC) are shortly described. Experimental results on simple molecular systems such as iodine, sulfur, oxygen and organic iodanil are reviewed as typical example of pressure induced superconductivity.


2017 ◽  
Vol 873 ◽  
pp. 353-357
Author(s):  
Bo Yu Feng ◽  
Zhi Hao Zhang

Based on nonlinear dynamics theory and knowledge of complex network, this paper expanded the range of two-layer network synchronization to projective outers synchronization. A mathematical model was constructed and feasibility of synchronization was demonstrated. Then we improved the model in order to study the function of different couplings [1]. Numerical examples are examined to compare the synchronizability of projective outer synchronization with different couplings. A rule called "outer small-world effect" was found due to simulation experiment. Finally, some instances were used to explain experimental results.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jingli Yang ◽  
Tianyu Gao ◽  
Shouda Jiang ◽  
Shijie Li ◽  
Qing Tang

In actual engineering applications, inevitable noise seriously affects the accuracy of fault diagnosis for rotating machinery. To effectively identify the fault classes of rotating machinery under noise interference, an efficient fault diagnosis method without additional denoising procedures is proposed. First, a one-dimensional deep residual shrinkage network, which directly takes the raw vibration signals contaminated by noise as input, is developed to realize end-to-end fault diagnosis. Then, to further enhance the noise immunity of the diagnosis model, the first layer of the model is set to a wide convolution layer to extract short time features. Moreover, an adaptive batch normalization algorithm (AdaBN) is introduced into the diagnosis model to enhance the adaptability to noise. Experimental results illustrate that the fault diagnosis model for rotating machinery based on one-dimensional deep residual shrinkage network with a wide convolution layer (1D-WDRSN) can accurately identify the fault classes even under noise interference.


Sign in / Sign up

Export Citation Format

Share Document