scholarly journals Fingerprinting sengon (Falcatria moluccana) accessions resistant to boktor pest and gall rust disease using microsatellite markers

2019 ◽  
Vol 20 (9) ◽  
Author(s):  
Ulfah Juniarti Siregar ◽  
DEWI RAHMAWATI ◽  
APRILIYA DAMAYANTI

Abstract. Siregar UJ, Rahmawati D, Damayanti A. 2019. Fingerprinting sengon (Falcatria moluccana) accessions resistant to boktor pest and gall rust disease using microsatellite markers. Biodiversitas 20: 2698-2706. Sengon (Falcataria moluccana Miq.) is a multipurpose fast-growing tree species and widely planted as community forest in Indonesia. According to Indonesian Light Wood Association (ILWA) F. moluccana wood products coming from forest industries in Jawa worth US$ 244.46 million export to China alone. The wood dust also has high potential as source for biomass-based energy in the form of wood-pellet. Monoculture plantation however often suffers from stem borer pest, known as boktor (Xystrocera festiva) and a gall rust disease, caused by fungi Uromycladium falcatarium. This research was aimed to characterize accessions of resistant and susceptible sengon individuals to both gall rust disease as well as stem borer pest using microsatellite markers. Totally 50 accessions of resistant and of resistant to stem borer pest were collected from Sumedang, West Jawa Province, while 88 accessions of resistant and of resistant to gall rust disease were sampled from Kediri, East Jawa Province and Sukabumi, Indonesia. Eight microsatellite markers could amplify most of the accessions used in this study and produce polymorphic fragments. High genetic diversity was detected in all of F. moluccana populations, with He ranged from 0.431 to 0.650. AMOVA showed that most genetic variations come from within populations. A dendrogram based on Nei’s genetic distance (1972) clustered some resistant accessions to either stem borer pest or gall rust disease separately from susceptible ones.

2017 ◽  
Vol 122 (2) ◽  
pp. 78-84 ◽  
Author(s):  
Håkan Löfstedt ◽  
Katja Hagström ◽  
Ing-Liss Bryngelsson ◽  
Mats Holmström ◽  
Anna Rask-Andersen

2021 ◽  
Vol 12 ◽  
Author(s):  
Amali Malshani Samaraweera ◽  
Ranga Liyanage ◽  
Mohamed Nawaz Ibrahim ◽  
Ally Mwai Okeyo ◽  
Jianlin Han ◽  
...  

Local chicken populations belonging to five villages in two geographically separated provinces of Sri Lanka were analyzed using 20 microsatellite markers to determine the genetic diversity of local chickens. Population genetic parameters were estimated separately for five populations based on geographic locations and for eight populations based on phenotypes, such as naked neck, long legged, crested or crown, frizzle feathered, Giriraj, commercial layer, crossbreds, and non-descript chicken. The analysis revealed that there was a high genetic diversity among local chickens with high number of unique alleles, mean number of alleles per locus (MNA), and total number of alleles per locus per population. A total of 185 microsatellite alleles were detected in 192 samples, indicating a high allelic diversity. The MNA ranged from 8.10 (non-descript village chicken) to 3.50 (Giriraj) among phenotypes and from 7.30 (Tabbowa) to 6.50 (Labunoruwa) among village populations. In phenotypic groups, positive inbreeding coefficient (FIS) values indicated the existence of population substructure with evidence of inbreeding. In commercial layers, a high expected heterozygosity He = 0.640 ± 0.042) and a negative FIS were observed. The positive FIS and high He estimates observed in village populations were due to the heterogeneity of samples, owing to free mating facilitated by communal feeding patterns. Highly admixed nature of phenotypes was explained as a result of rearing many phenotypes by households (58%) and interactions of chickens among neighboring households (53%). A weak substructure was evident due to the mating system, which disregarded the phenotypes. Based on genetic distances, crown chickens had the highest distance to other phenotypes, while the highest similarity was observed between non-descript village chickens and naked neck birds. The finding confirms the genetic wealth conserved within the populations as a result of the breeding system commonly practiced by chicken owners. Thus, the existing local chicken populations should be considered as a harbor of gene pool, which can be readily utilized in developing locally adapted and improved chicken breeds in the future.


Author(s):  
Dainis Edgars Ruņģis ◽  
Baiba Krivmane

Abstract Changing climatic conditions are transforming the ecological and silvicultural roles of broadleaf tree species in northern Europe. Small-leaved lime (Tilia cordata Mill.) is distributed throughout most of Europe, and is a common broadleaf species in Latvia. This species can tolerate a broad range of environmental and ecological conditions, including temperature, water availability, and soil types. The aim of this study was to assess the genetic diversity and differentiation of Latvian T. cordata populations using nuclear microsatellite markers developed for Tilia platyphyllos. After testing of 15 microsatellite markers, Latvian T. cordata samples were genotyped at 14 micro-satellite loci. Latvian T. cordata populations had high genetic diversity, and were not overly isolated from each other, with moderate gene flow between populations. No highly differentiated populations were identified. Vegetative reproduction was identified in most analysed populations, and almost one-third of analysed individuals are of clonal origin. T. cordata has high timber production potential under the current climatic and growth conditions in Latvia, and therefore this species has potential for use in forestry, as well as playing a significant role in maintaining biodiversity and other ecosystem services.


Author(s):  
Ahmed Medhat Mohamed Al-Naggar ◽  
Mohamed Abd El-Maboud Abd El-Shafi ◽  
Mohamed Helmy El-Shal ◽  
Ali Hassan Anany

To increase the genetic progress in wheat (Triticum aestivum L.) yield, breeders search for germplasm of high genetic diversity, one of them is the landraces. The present study aimed at evaluating genetic diversity of 20 Egyptian wheat landraces and two cultivars using microsatellite markers (SSRs). Ten SSR markers amplified a total of 27 alleles in the set of 22 wheat accessions, of which 23 alleles (85.2%) were polymorphic. The majority of the markers showed high polymorphism information content (PIC) values (0.67-0.94), indicating the diverse nature of the wheat accessions and/or highly informative SSR markers used in this study. The genotyping data of the SSR markers were used to assess genetic variation in the wheat accessions by dendrogram. The highest genetic distance was found between G21 (Sakha 64; an Egyptian cultivar) and the landrace accession No. 9120 (G11). These two genotypes could be used as parents in a hybridization program followed by selection in the segregating generations, to identify some transgressive segregates of higher grain yield than both parents. The clustering assigned the wheat genotypes into four groups based on SSR markers. The results showed that the studied SSR markers, provided sufficient polymorphism and reproducible fingerprinting profiles for evaluating genetic diversity of wheat landraces. The analyzed wheat landraces showed a good level of genetic diversity at the molecular level. Molecular variation evaluated in this study of wheat landraces can be useful in traditional and molecular breeding programs.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Maral Gharaghani ◽  
Ali Rezaei-Matehkolaei ◽  
Amir Kamal Hardani ◽  
Ali Zarei Mahmoudabadi

Background: Candida glabrata is the second agent of candiduria with increased resistance to antifungals. Microsatellite length polymorphism (MLP) is one of the genotyping techniques used in the epidemiological investigation to improve clinical management. Objectives: We aimed to detect different genotypes of C. glabrata isolates using six microsatellite markers and the MLP technique. Moreover, our genotypes' association with other countries' genotypes was illustrated using a minimum spanning tree. We investigated in vitro antifungal susceptibility and enzymatic activity profiles of the isolates. Methods: Six microsatellite markers were amplified using multiplex-PCR for 22 C. glabrata strains isolated from urine in pediatric patients admitted to the Abuzar Children's Hospital in Ahvaz, Iran. The PCR products were presented for fragment analysis, and the size of the alleles was determined. Antifungal susceptibility tests and extracellular enzyme activities were also performed. Results: Nineteen multilocus genotypes were detected so that 22.7% of the strains had identical genotypes. The isolates were wild-type for amphotericin B (0.0625 - 2 µg/mL), itraconazole (0.125 - 2 µg/mL), and voriconazole (0.0078 - 0.00625 µg/mL). All the isolates were sensitive to fluconazole at the minimum inhibitory concentration (MIC) range (0.0312 - 16 μg/mL), and three of them were resistant to caspofungin (MIC ≥ 0.5 μg/mL). Moreover, 72.7 and 68.2% of the isolates had no phospholipase and esterase activities. The highest potency of enzymatic activity was obtained in hemolysin and proteinase enzymes. A high genetic diversity (19 genotypes of the 22 isolates) existed among the urinary C. glabrata isolates. Based on the minimum spanning tree, two clusters of our genotypes were related to C. glabrata genotypes in a previous study in Iran, and the third cluster was entirely connected with Chinese genotypes. Conclusions: Most of the isolates were the non-wild type for posaconazole but were rarely resistant to other antifungals. Hemolysin and proteinase secreted as the main virulence factors among the urinary C. glabrata isolates.


2019 ◽  
Author(s):  
Vanlalsanga No Surname ◽  
Sagolshem Priyokumar Singh ◽  
Yengkhom Tunginba Singh

Abstract Background Rice (Oryza sativa L.) is one of the most important crops of the world and a major staple food for half of the World’s human population. The Northeastern (NE) region of India lies in the Indo-Burma biodiversity hotspot and about 45% of the total flora of the country is found in the region. Local rice cultivars from different states of NE India were analyzed for genetic diversity and population structure using microsatellite markers, and their zinc and iron content. Results A total of 149 bands were detected using twenty-two microsatellite markers comprising both random and trait-linked markers, showing 100% polymorphism and high value of expected heterozygosity (0.6311) and the polymorphism information content (0.5895). Nali Dhan cultivar of Arunachal Pradesh possessed the highest genetic diversity (0.3545) among studied populations while Moirangphou Khonganbi of Manipur exhibited the lowest genetic diversity (0.0343). The model-based population structure revealed that all the studied 65 rice cultivars were grouped into two clusters. Cluster I was represented by 36 cultivars and cluster II by 29 cultivars. Badalsali cultivar of Assam possessed the highest Zn content (75.8 μg/g) and Kapongla from Manipur possessed the lowest (17.98 μg/g). The highest and the lowest Fe content was found in Fazu (215.62 μg/g) and Idaw (11.42 μg/g) of Mizoram. Conclusion The result suggested rice cultivars of NE India possessing high genetic diversity (Nali Dhan), high Zn (Badalsali) and Fe (Fazu) content can be useful as a source of germplasm for future rice improvement programs.


2016 ◽  
Vol 95 (S1) ◽  
pp. 19-24 ◽  
Author(s):  
FRANCISCO MORINHA ◽  
PEDRO SILVEIRA RAMOS ◽  
SÓNIA GOMES ◽  
ROBERT WILLIAM MANNAN ◽  
HENRIQUE GUEDES-PINTO ◽  
...  

2012 ◽  
Vol 92 (4) ◽  
pp. 417-423 ◽  
Author(s):  
Jinjun Li ◽  
Qingyuan Yuan ◽  
Junda Shen ◽  
Zhengrong Tao ◽  
Guoqing Li ◽  
...  

Li, J., Yuan, Q., Shen, J., Tao, Z., Li, G., Tian, Y., Wang, D., Chen, L. and Lu, L. 2012. Evaluation of the genetic diversity and population structure of five indigenous and one introduced Chinese goose breeds using microsatellite markers. Can. J. Anim. Sci. 92: 417–423. The aim of this study was to determine the genetic diversity and evolutionary relationships among five indigenous Chinese goose breeds and one introduced goose breed using 29 microsatellite markers. A total of 334 distinct alleles were observed across the six breeds, and 45 of the 334 alleles (13.5%) were unique to only one breed. The indigenous geese showed higher diversity in terms of the observed number of alleles per locus (4.48–5.90) and observed heterozygosity (0.46–0.53) compared with the introduced breed (3.97 and 0.29, respectively). The pairwise genetic differentiation (FST) between the six goose breeds ranged from 0.04 between Panshi Grey goose (PS) and Yongkang Grey goose to 0.47 between PS and Landes goose; similarly, Nei's genetic distance varied between 0.25 and 0.75. However, the FST between the indigenous Chinese goose breeds was very small. In addition, genetic distance estimate, phylogenic, and cluster analyses of the genetic relationships and population structure revealed that some indigenous goose breeds had hybridized more frequently, resulting in a loss of genetic distinctiveness.


2015 ◽  
Vol 21 (4) ◽  
pp. 266 ◽  
Author(s):  
David B. Lindenmayer ◽  
David Blair ◽  
Lachlan McBurney ◽  
Sam C. Banks

Regional Forest Agreements (RFAs) are State–Federal agreements underpinning the management of the majority of Australia’s commercially productive native forests. Introduced between 1997 and 2001, they were designed to deliver certainty to forest industries while, simultaneously, guaranteeing environmental protection, including the conservation of biodiversity. Using examples, we argue that RFAs in some jurisdictions have failed to do either. We strongly recommend a comprehensive reassessment of RFAs. This is needed to: (1) take into account significant new knowledge on forest ecology and management that has been gathered in the past 20 years, including updated prognoses for some critically endangered species; (2) better evaluate the full range of wood and non-wood products and services provided by forests; (3) accommodate new methods of forest inventory and more environmentally sensitive silvicultural systems; and (4) better account for the impacts of natural disturbances, such as fires, on the area available for logging, sustained yield, and forest ecosystem integrity per se. Without a substantial overhaul of the RFAs, there is a significant risk of undervaluing the full range of native forest values, exacerbating species declines, and permanently damaging forest ecosystems.


Sign in / Sign up

Export Citation Format

Share Document