scholarly journals Genetic Analysis and Pathogenic Characterization of Alternaria tenuissima Induced Fruit Rot of Bitter Gourd

2021 ◽  
Vol 22 (2) ◽  
Author(s):  
SEHRISH IFTIKHAR ◽  
WAHEED ANWAR ◽  
Adnan Akhter ◽  
SAJID ALI ◽  
HAFIZ AZHAR ALI KHAN ◽  
...  

Abstract. Iftikhar S, Anwar W, Akhter A, Ali S, Khan HAA, Khurshid M, Haider MS. 2021. Genetic analysis and pathogenic characterization of Alternaria tenuissima induced fruit rot of bitter gourd. Biodiversitas 22: 617-625. Bitter gourd (Momordica charantia Linn.), belongs to Cucurbitaceae family, is widely cultivated in areas with warm climate. In 2017, fruits of bitter gourd-bearing rot symptoms were observed in the Punjab province of Pakistan. The disease-causing fungal isolate was collected from the diseased fruits on potato dextrose agar (PDA). Microscopic examination revealed short conidiophores arose singly, measuring 79.8- 158.5 μm long and 3.94-7.89 μm thick. The size of conidia varied from 25.7 to 46.45 μm and 8.55-14.39 μm in length and width respectively, which were characteristics of Alternaria spp. To confirm the identity and molecular characterization of the isolate, the internal transcribed spacer (ITS) region, translation elongation factor 1 alpha (TEF1-α), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and RNA polymerase II large subunit 2 (RPB2) genes were amplified. The sequence analysis of amplicons and phylogenetic studies specified the homology of isolated Alternaria spp. with the previously reported A. tenuissima in GeneBank. The pathogenicity tests conducted on the fruits of bitter gourd confirmed the disease development with typical Alternaria induced rot symptoms, thus satisfied Koch's postulate. To our knowledge, this is the first record of A. tenuissima causing fruit rot of bitter gourd in Pakistan.

2020 ◽  
Vol 70 (8) ◽  
pp. 4496-4501 ◽  
Author(s):  
Yu Zhou ◽  
Bi-Si Jia ◽  
Yu-Guang Zhou ◽  
Ai-Hua Li ◽  
Lu Xue

Two yeast strains representing a novel species in the basidiomycetous yeast genus Naganishia were isolated from flowers of Sorbaria sorbifolia collected in Beijing Olympic Forest Park, PR China. Results of multi-gene phylogenetic analysis indicated that the two strains were closely related to the type strains of Naganishia bhutanensis (CBS 6294T) and Naganishia antarctica (CBS 7687T). However, the new isolates differed from N. bhutanensis CBS 6294T by 1.79 % sequence divergence in the D1/D2 domain (11 nt substitutions and three indels), and 2.42 % (15 nt differences and one indel) to N. antarctica CBS 7687T. In the ITS region, the new isolates showed 1.15 % divergence (7 nt substitutions and one indel) to N. bhutanensis CBS 6294T and 0.92 % divergence (5 nt substitutions and no indels) to N. antarctica CBS 7687T. A phylogenetic analysis employing the sequences of six genes (D1/D2 domain of large subunit rDNA, ITS, small subunit rDNA, two subunits of the RNA polymerase II and elongation factor-1α) indicated that the novel species belonged to the genus Naganishia and formed a well-supported clade with N. bhutanensis, N. antarctica and N. indica. Moreover, the two strains differed from their closest relatives by the ability to grow on distinct carbon and nitrogen sources and ability to grow at 30 °C. On the basis of these findings, we propose a novel species in the genus Naganishia (Filobasidiales), Naganishia floricola sp. nov. (holotype CGMCC 2.5856).


Phytotaxa ◽  
2020 ◽  
Vol 447 (4) ◽  
pp. 221-236
Author(s):  
YA-JUN HOU ◽  
ZAI-WEI GE

Three species of Lepiota sensu lato from China are described and illustrated based on morphological characters and molecular evidence. Echinoderma flavidoasperum and Lepiota omninoflava are new to science, while Lepiota echinacea is newly reported from China. Echinoderma flavidoasperum is characterized by a yellow pileus, nearly smooth stipe that discolors light red when bruised, and subcylindrical basidiospores. Lepiota omninoflava, so far only found in the tropics, is characterized by the yellow basidiomata, ellipsoid basidiospores and the absence of cheilocystidia. All three of the Chinese species are discussed and placed within a phylogeny based on the internal transcribed spacer (ITS) region, the large subunit (LSU) of the ribosomal DNA, the translation elongation factor 1-α (tef1-α) and the second largest subunit of RNA polymerase II (rpb2).


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takamichi Orihara ◽  
Rosanne Healy ◽  
Adriana Corrales ◽  
Matthew E. Smith

ABSTRACTAmong many convergently evolved sequestrate fungal genera in Boletaceae (Boletales, Basidiomycota), the genus Octaviania is the most diverse. We recently collected many specimens of Octaviania subg. Octaviania, including several undescribed taxa, from Japan and the Americas. Here we describe two new species in subgenus Octaviania, O. tenuipes and O. tomentosa, from temperate to subtropical evergreen Fagaceae forests in Japan based on morphological observation and robust multilocus phylogenetic analyses (nrDNA ITS and partial large subunit [LSU], translation elongation factor 1-α gene [TEF1] and the largest subunit of RNA polymerase II gene [RPB1]). Based on specimens from the Americas as well as studies of the holotype, we also taxonomically re-evaluate O. asterosperma var. potteri. Our analysis suggests that O. asterosperma var. potteri is a distinct taxon within the subgenus Octaviania so we recognize this as O. potteri stat. nov. We unexpectedly collected O. potteri specimens from geographically widespread sites in the USA, Japan and Colombia. This is the first verified report of Octaviania from the South American continent. Our molecular analyses also revealed that the RPB1 sequence of one O. tenuipes specimen was identical to that of a closely related species, O. japonimontana, and that one O. potteri specimen from Minnesota had an RPB1 sequence of an unknown species of O. subg. Octaviania. Additionally, one O. japonimontana specimen had an unusually divergent TEF1 sequence. Gene-tree comparison and phylogenetic network analysis of the multilocus dataset suggest that these heterogenous sequences are most likely the result of previous inter- and intra-specific hybridization. We hypothesize that frequent hybridization events in Octaviania may have promoted the high genetic and species diversity found within the genus.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 463
Author(s):  
Amal Rabaaoui ◽  
Chiara Dall’Asta ◽  
Laura Righetti ◽  
Antonia Susca ◽  
Antonio Logrieco ◽  
...  

In 2017–2018, extensive symptoms of sudden decline and fruit rot were observed on date palms in southern Tunisia. Samples of diseased plants were randomly collected in six localities. Based on morphological identification, Fusarium was the most frequent fungal genus detected. A sequencing of translation elongation factor, calmodulin, and second largest subunit of RNA polymerase II genes was used to identify 63 representative Fusarium strains at species level and investigate their phylogenetic relationships. The main species detected was Fusarium proliferatum, and at a much lesser extent, Fusarium brachygibbosum, Fusarium caatingaense, Fusarium clavum, Fusarium incarnatum, and Fusarium solani. Pathogenicity on the Deglet Nour variety plantlets and the capability to produce mycotoxins were also assessed. All Fusarium species were pathogenic complying Koch’s postulates. Fusarium proliferatum strains produced mainly fumonisins (FBs), beauvericin (BEA), and, to a lesser extent, enniatins (ENNs) and moniliformin (MON). All F. brachygibbosum strains produced low levels of BEA, diacetoxyscirpenol, and neosolaniol; two strains produced also T-2 toxin, and a single strain produced HT-2 toxin. Fusarium caatingaense, F. clavum, F. incarnatum produced only BEA. Fusarium solani strains produced MON, BEA, and ENNs. This work reports for the first time a comprehensive multidisciplinary study of Fusarium species on date palms, concerning both phytopathological and food safety issues.


1993 ◽  
Vol 13 (5) ◽  
pp. 2718-2729
Author(s):  
S F Kash ◽  
J W Innis ◽  
A U Jackson ◽  
R E Kellems

Transcription arrest plays a role in regulating the expression of a number of genes, including the murine adenosine deaminase (ADA) gene. We have previously identified two prominent arrest sites at the 5' end of the ADA gene: one in the first exon and one in the first intron (J. W. Innis and R. E. Kellems, Mol. Cell. Biol. 11:5398-5409, 1991). Here we report the functional characterization of the intron 1 arrest site, located 137 to 145 nucleotides downstream of the cap site. We have determined, using gel filtration, that the intron 1 arrest site is a stable RNA polymerase II pause site and that the transcription elongation factor SII promotes read-through at this site. Additionally, the sequence determinants for the pause are located within a 37-bp fragment encompassing this site (+123 to +158) and can direct transcription arrest in an orientation-dependent manner in the context of the ADA and adenovirus major late promoters. Specific point mutations in this region increase or decrease the relative pausing efficiency. We also show that the sequence determinants for transcription arrest can function when placed an additional 104 bp downstream of their natural position.


Plant Disease ◽  
2017 ◽  
Vol 101 (8) ◽  
pp. 1402-1410 ◽  
Author(s):  
Gonzalo A. Díaz ◽  
Bernardo A. Latorre ◽  
Mauricio Lolas ◽  
Enrique Ferrada ◽  
Paulina Naranjo ◽  
...  

Diaporthe spp. are important plant pathogens causing wood cankers, blight, dieback, and fruit rot in a wide range of hosts. During surveys conducted during the 2013 and 2014 seasons, a postharvest rot in Hayward kiwifruit (Actinidia deliciosa) was observed in Chile. In order to identify the species of Diaporthe associated with this fruit rot, symptomatic fruit were collected from seven kiwifruit packinghouses located between San Francisco de Mostazal and Curicó (central Chile). Twenty-four isolates of Diaporthe spp. were identified from infected fruit based on morphological and cultural characters and analyses of nucleotides sequences of three loci, including the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2), a partial sequences of the β-tubulin, and translation elongation factor 1-α genes. The Diaporthe spp. identified were Diaporthe ambigua, D. australafricana, D. novem, and D. rudis. Multilocus phylogenetic analysis revealed that Chilean isolates were grouped in separate clades with their correspondent ex-types species. All species of Diaporthe were pathogenic on wounded kiwifruit after 30 days at 0°C under normal and controlled-atmosphere (2% O2 and 5% CO2) storage and they were sensitive to benomyl, pyraclostrobin, and tebuconazole fungicides. D. ambigua isolates were the most virulent based on the lesion length measured in inoculated Hayward and Jintao kiwifruit. These findings confirm D. ambigua, D. australafricana, D. novem, and D. rudis as the causal agents of kiwifruit rot during cold storage in Chile. The specie D. actinidiae, a common of Diaporthe sp. found associated with kiwifruit rot, was not identified in the present study.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiulan Xu ◽  
Si-yi Liu ◽  
Yicong Lv ◽  
Qian Zeng ◽  
Yinggao Liu ◽  
...  

Photinia × fraseri is a well-known green plant mainly distributed in the Yangtze River and Yellow River Basin, east and southwest of China (Guan et al. 2013). In October 2020, typical leaf blight symptoms on roughly 10% leaves in a Photinia × fraseri shrub were observed in the campus of Sichuan Agricultural University (30°42′19″ N, 103°51′29″ E). Initially, chlorotic lesions with brown margins occurred on the leaf margin, then the large patches formed to cause leaves necrotic, finally lesions to dry and acervulus bred in 2–4 months later. Five single conidium isolates were carried out (Chomnunti et al. 2014) cultured on potato dextrose agar (PDA) at 25 ℃. All isolates shared similarly morphological characteristics, which was white and thin, and the reverse were yellowish. Mycelium was hyaline, sparsely septate, measuring 1–4 μm in diam. Conidiogenesis formed after 7 days. Conidiogenous cells were discrete, lageniform, smooth, thin-walled, colorless. Conidia were fusiform, straight to slightly curved, 4-septate, 21–30 × 5–7 μm (x ̅= 27 × 6.0 μm, n=30); basal cells were obconic with truncate base, hyaline, thin- and smooth-walled, 4–7 μm long (x ̅= 5.5 μm, n=30); three median cells were doliiform with thick walls, concolorous, olivaceous, constricted at the septa, and septa and periclinal walls were darker than the rest of the cell, 14–20 μm long (x ̅= 17 μm, n=30); apical cells were hyaline, conic to cylindrical, 3.0–6.5 μm long (x ̅= 4.5 μm, n=30), with 2–4 (mostly 3) tubular apical appendages arising from the upper portion, rarely branched, 7.5–18 μm long (x ̅= 12 μm, n=50); basal appendage was single, unbranched, 3–10 μm long (x ̅= 6.5 μm, n=30). DNA was extracted from the representative strain (SICAUCC 21-0012), and the internal transcribed spacer (ITS) region, the large subunit of the nrDNA (LSU), translation elongation factor 1-alpha (tef1-α), and partial sequences of β-tubulin (tub2) were amplified by polymerase chain reaction and sequenced with primers ITS5/ITS4, LR0R/LR5, 728F/1567R, and Bt2a/Bt2b, respectively (Zhang et al. 2012, Ariyawansa & Hyde 2018). The sequences were deposited in GenBank, viz. MZ453106, MZ453108, MZ467300, MZ467301, respectively. The nucleotide blast showed 99% (ITS, 0 gaps), 100% (tub2, 0 gaps), 100% (tef1-α, 0 gaps) identities with the ex-type Pestalotiopsis trachicarpicola Yan M. Zhang & K. D. Hyde (IFRDCC 2440). The fungus was identified as P. trachicarpicola combined with phylogeny and morphology (Maharachchikumbura et al. 2012, Zhang et al. 2012). To conduct Koch’s postulates, five healthy 6-year-old P. × fraseri were inoculated with 10 µl spore suspension (106 conidia/ml) onto the wounded sites (five leaves per plant, ~1 to 2 years old) via sterile pin, and five healthy plants treated with sterile dH2O as controls (Yang et al. 2021). The plants were placed in a greenhouse at 25°C with relative humidity >80%. After 2 months, leaf blight symptoms gradually emerged on inoculated leaves, and the controls were symptomless. Fungal isolates from symptomatic plants showed similar morphological characteristics as SICAUCC 21-0012, and the pathogen was not isolated from asymptomatic plants. To our knowledge, this is the first report of leaf blight caused by P. trachicarpicola on Photinia × fraseri in China. Disease management should be adopted properly to restore and improve its ornamental value.


Plant Disease ◽  
2018 ◽  
Vol 102 (11) ◽  
pp. 2083-2100 ◽  
Author(s):  
Beatriz Mora-Sala ◽  
Ana Cabral ◽  
Maela León ◽  
Carlos Agustí-Brisach ◽  
Josep Armengol ◽  
...  

Cylindrocarpon-like asexual morphs infect herbaceous and woody plants, mainly in agricultural scenarios, but also in forestry systems. The aim of the present study was to characterize a collection of Cylindrocarpon-like isolates recovered from the roots of a broad range of forest hosts from nurseries showing decline by morphological and molecular studies. Between 2009 and 2012, 17 forest nurseries in Spain were surveyed and a total of 103 Cylindrocarpon-like isolates were obtained. Isolates were identified based on DNA sequences of the partial gene regions histone H3 (his3). For the new species, the internal transcribed spacer and intervening 5.8S nrRNA gene (ITS) region, β-tubulin (tub2), and translation elongation factor 1-α (tef1) were also used to determine their phylogenetic position. Twelve species belonging to the genera Cylindrodendrum, Dactylonectria, and Ilyonectria were identified from damaged roots of 15 different host genera. The species C. alicantinum, D. macrodidyma, D. novozelandica, D. pauciseptata, D. pinicola, D. torresensis, I. capensis, I. cyclaminicola, I. liriodendri, I. pseudodestructans, I. robusta, and I. rufa were identified. In addition, two Dactylonectria species (D. hispanica sp. nov. and D. valentina sp. nov.), one Ilyonectria species (I. ilicicola sp. nov.), and one Neonectria species (N. quercicola sp. nov.) are newly described. The present study demonstrates the prevalence of this fungal group associated with seedlings of diverse hosts showing decline symptoms in forest nurseries in Spain.


Plant Disease ◽  
2020 ◽  
Author(s):  
Fangmin Hao ◽  
Quanyu Zang ◽  
Weihong Ding ◽  
Erlei Ma ◽  
Yunping Huang ◽  
...  

Melon (Cucumis melo L.) is a member of the Cucurbitaceae family, an important economical and horticultural crop, which is widely grown in China. In May 2020, fruit rot disease with water-soaked lesions and pink molds on cantaloupe melons was observed in several greenhouses with 50% disease incidence in Ningbo, Zhejiang Province in China. In order to know the causal agent, diseased fruits were cut into pieces, surface sterilized for 1 min with 1% sodium hypochlorite (NaClO), 2 min with 75% ethyl alcohol, rinsed in sterile distilled water three times (Zhou et al. 2018), and then placed on potato dextrose agar (PDA) medium amended with streptomycin sulfate (100 μg/ml) plates at 25°C for 4 days. The growing hyphae were transferred to new PDA plates using the hyphal tip method, putative Fusarium colonies were purified by single-sporing. Twenty-five fungal isolates were obtained and formed red colonies with white aerial mycelia at 25°C for 7 days, which were identified as Fusarium isolates based on the morphological characteristics and microscopic examination. The average radial mycelial growth rate of Fusarium isolate Fa-25 was 11.44 mm/day at 25°C in the dark on PDA. Macroconidia were stout with curved apical and basal cells, usually with 4 to 6 septa, and 29.5 to 44.2 × 3.7 to 5.2 μm on Spezieller Nährstoffarmer agar (SNA) medium at 25°C for 10 days (Leslie and Summerell 2006). To identify the species, the internal transcribed spacer (ITS) region and translational elongation factor 1-alpha (TEF1-α) gene of the isolates were amplified and cloned. ITS and TEF1-α was amplified using primers ITS1/ITS4 and EF1/EF2 (O’Donnell et al. 1998), respectively. Sequences of ITS (545 bp, GenBank Accession No. MT811812) and TEF1-α (707 bp, GenBank Acc. No. MT856659) for isolate Fa-25 were 100% and 99.72% identical to those of F. asiaticum strains MSBL-4 (ITS, GenBank Acc. MT322117.1) and Daya350-3 (TEF1-α, GenBank Acc. KT380124.1) in GenBank, respectively. A phylogenetic tree was established based on the TEF1-α sequences of Fa-25 and other Fusarium spp., and Fa-25 was clustered with F. asiaticum. Thus, both morphological and molecular characterizations supported the isolate as F. asiaticum. To confirm the pathogenicity, mycelium agar plugs (6 mm in diameter) removed from the colony margin of a 2-day-old culture of strain Fa-25 were used to inoculate melon fruits. Before inoculation, healthy melon fruits were selected, soaked in 2% NaClO solution for 2 min, and washed in sterile water. After wounding the melon fruits with a sterile needle, the fruits were inoculated by placing mycelium agar plugs on the wounds, and mock inoculation with mycelium-free PDA plugs was used as control. Five fruits were used in each treatment. The inoculated and mock-inoculated fruits were incubated at 25°C with high relative humidity. Symptoms were observed on all inoculated melon fruits 10 days post inoculation, which were similar to those naturally infected fruits, whereas the mock-inoculated fruits remained symptomless. The fungus re-isolated from the diseased fruits resembled colony morphology of the original isolate. The experiment was conducted three times and produced the same results. To our knowledge, this is the first report of fruit rot of melon caused by F. asiaticum in China.


Phytotaxa ◽  
2018 ◽  
Vol 356 (1) ◽  
pp. 91 ◽  
Author(s):  
LIN ZHU ◽  
XING JI ◽  
JING SI ◽  
BAO-KAI CUI

Phellinus vietnamensis sp. nov. is described from Vietnam based on morphological characters and molecular data. Morphologically, it is characterized by perennial, pileate basidiomata, a dimitic hyphal system, hooked hymenial setae, and colorless, broadly subglobose to ovoid, thick-walled basidiospores 5.5–6 × 4.8–5.2 μm. Phylogenetically, the status of Phellinus vietnamensis is strongly supported based on sequences of the nuclear internal transcribed spacer (ITS) regions, the translation elongation factor 1-α gene (EF1-α) nuclear large subunit rDNA (nrLSU) and the second largest subunits of RNA polymerase II (RPB2).


Sign in / Sign up

Export Citation Format

Share Document