scholarly journals Phylogeny and Mycotoxin Profile of Pathogenic Fusarium Species Isolated from Sudden Decline Syndrome and Leaf Wilt Symptoms on Date Palms (Phoenix dactylifera) in Tunisia

Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 463
Author(s):  
Amal Rabaaoui ◽  
Chiara Dall’Asta ◽  
Laura Righetti ◽  
Antonia Susca ◽  
Antonio Logrieco ◽  
...  

In 2017–2018, extensive symptoms of sudden decline and fruit rot were observed on date palms in southern Tunisia. Samples of diseased plants were randomly collected in six localities. Based on morphological identification, Fusarium was the most frequent fungal genus detected. A sequencing of translation elongation factor, calmodulin, and second largest subunit of RNA polymerase II genes was used to identify 63 representative Fusarium strains at species level and investigate their phylogenetic relationships. The main species detected was Fusarium proliferatum, and at a much lesser extent, Fusarium brachygibbosum, Fusarium caatingaense, Fusarium clavum, Fusarium incarnatum, and Fusarium solani. Pathogenicity on the Deglet Nour variety plantlets and the capability to produce mycotoxins were also assessed. All Fusarium species were pathogenic complying Koch’s postulates. Fusarium proliferatum strains produced mainly fumonisins (FBs), beauvericin (BEA), and, to a lesser extent, enniatins (ENNs) and moniliformin (MON). All F. brachygibbosum strains produced low levels of BEA, diacetoxyscirpenol, and neosolaniol; two strains produced also T-2 toxin, and a single strain produced HT-2 toxin. Fusarium caatingaense, F. clavum, F. incarnatum produced only BEA. Fusarium solani strains produced MON, BEA, and ENNs. This work reports for the first time a comprehensive multidisciplinary study of Fusarium species on date palms, concerning both phytopathological and food safety issues.

Plant Disease ◽  
2020 ◽  
Author(s):  
Ahmed Namsi ◽  
Amal Rabaoui ◽  
Mario Masiello ◽  
Antonio Moretti ◽  
Ahmed Othmani ◽  
...  

Since 2017, a new leaf wilt syndrome was observed in plantations of date palm in Tunisia. Its incidence increases sharply from year to year, especially in ‘Deglet Nour’ trees, aged between 5 and 15 years. In severe cases, the large number of dried leaves per tree can lead to complete cessation of date production. Symptoms appear on one or more leaves in the center of the crown. Whitening and drying start at the top of the leaflets and proceed to their base, while the midrib remains green. Then the whole leaf dies. Small white-creamy leaflet fragments and roots were collected from five different regions in the Djerid Oases. They were disinfected with diluted bleach (0,8 % NaOCl) and ethanol (80%) (each 2 min), rinsed with sterile distilled water, dried and finally plated in Petri dishes containing Potato Dextrose Agar (PDA) amended with 50mg/l neomycin. After incubation for 7 days at 25ºC±2, emerging fungal colonies were single-spored by serial dilution. They were transferred to PDA, Carnation Leaf Agar (CLA) and Spezieller Nahrstoffarmer Agar (SNA) for morphological identification. Based on the colony color on PDA, conidial morphology and phialide structures on CLA and/or SNA, of the 85 Fusarium isolates, around 90% were identified as F. proliferatum and around 10% as F. brachygibbosum (Leslie and Summerell, 2006). Fusarium proliferatum colonies rapidly developed white aerial mycelium that became purple in old cultures. Microconidia were abundant in the aerial mycelium and formed chains of variable length, on monophialides and polyphialids, a characteristic that distinguishes F. proliferatum from F. verticilloides. Less often, they were observed in false heads. Chlamydospores were absent. On CLA, microconidia were mostly 2 × 15 µm in size, a large number of sickle shaped macroconidia (2 × 25 µm) had one septum, some were larger (2 × 50 µm) with 3 septa and tips at both ends. Molecular identification was carried out based on elongation factor (EF-1α) gene sequencing. The region between the EF1 and EF2 primers (O’Donnell et al., 1998) was amplified and the sequences were compared to Fusarium reference sequences (GenBank). The sequences of the isolates Fus 1953 (539 bp), Fus 1962 (618 bp), and Fus 1965 (605 bp) shared respectively 100%, 99.51% and 99.51% homology with that of F. proliferatum JF740713.1 and were deposited in GenBank with the following accession numbers: MT630418, MT630419, and MT630420, respectively. The sequences of isolates 7F, 28F, Fus 1955 and Fus 1956 shared 100 % homology with that of F. brachygibbosum (GQ505418.1) while those of Fus 1955 and Fus 1956 showed 99.02 and 98.91 % identity, respectively, with F. brachygibbosum JX118981.1. The sequences of 7F (535 bp), 28F (535 bp), Fus 1955 (608 bp), and Fus 1956 (647 bp) were deposited in GenBank with the following accession numbers: MT630409, MT630410, MT630411, and MT630412, respectively. Two ml suspension of 106 conidia / ml of each isolate was sprayed separately or in combinations on in vitro cloned ‘Deglet Nour’ plants, placed in a greenhouse at 28°±2 °C and 70% R.H.. Isolates of F. proliferatum led to dryness and wilting leaflets after 3 weeks. Fusarium brachygibbosum only induced mild leaf yellowing, while in combination they were more virulent. Fungal isolates of both species were re-isolated and their identity confirmed to be the same of those isolated from leaflets infected in the open field, confirming Koch’s postulates. Control plants lacked symptoms. Fusarium proliferatum is known as date palm pathogen in many countries (Saleh et al. 2017), however, to our knowledge, this is the first report of F. proliferatum and also F. brachygibbosum causing Leaf Wilt symptoms on P. dactylifera in Tunisia.


2016 ◽  
Vol 56 (3) ◽  
pp. 231-236 ◽  
Author(s):  
Nur Baiti Abd Murad ◽  
Nor Azizah Kusai ◽  
Nur Ain Izzati Mohd Zainudin

Abstract Fruit rot of tomato is a serious disease caused by Fusarium species. Sampling was conducted throughout Selangor, Malaysia and fungal species identification was conducted based on morphological and gene encoding translation elongation factor 1-α (tef1-α) sequence analysis. Five species of Fusarium were discovered namely F. oxysporum (including F. oxysporum f. sp. lycopersici), F. solani, F. equiseti, F. proliferatum and F. verticillioides. Our results provide additional information regarding the diversity of Fusarium species associated with fruit rot disease of tomato.


Plant Disease ◽  
2021 ◽  
Author(s):  
Kholoud Alananbeh ◽  
Monther M Tahat ◽  
Haitham Al-Taweel

Date palm (Phoenix dactylifera L.) is one of the world’s oldest cultivated fruit crops. In Jordan, date palm farming started in the 1990s. The major date palm planting areas are Jordan valley, Aqaba, and Azraq (Al Antary et al., 2015). ‘Medjool’ and ‘Barhi’ are the two major cultivars in Jordan. In early 2018, some 18- to 24- month old date palm trees (cv ‘Medjool’) showed light brownish discoloration and dryness symptoms on the leaves and branches of infected date palm trees at the Jordan University Agricultural Research Station (JUARS) at the Jordan Valley (GPS coordinates 32.086871, 35.597219) (Figure 1). All the leaf parts including leaf base, spines, and leaflets were wrinkled and malformed. The infection led to a loss of 1-2% out of 1100 total Medjool trees at the station. Similar symptoms were observed in many date palm farms in the Jordan Valley. Diseased samples from rachis tissue from the JUARS were collected, surface sterilized with 5% sodium hypochlorite for five minutes, rinsed with distilled water for three times, dried, and plated on potato dextrose agar (PDA) medium (HIMEDIA). The plates were incubated at 25°C for seven days. After that, different fungal colonies were purified using the hyphal tip method. Mycelium of a representative isolate (FpDP2018JO-01) was harvested, DNA extracted using the CTAB protocol (Doyle and Doyle, 1990), amplified with three primers: ITS1/4 (White et al., 1990), β-tubulin and the elongation factor 1-alpha (EF1) gene regions. Amplicons were sequenced at Macrogen Inc, South Korea. Sequences were edited via MEGA 7 software (Kumar et al., 2016) and Blastn at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov) which was used to search for similar accessions. The sequences were submitted to the GenBank and accession numbers were received for ITS1/2 (MK522076), β-tubulin (MK720958) and elongation factor 1 alpha (MW533146). The sequences were further used at the Fusarium MLST (https://fusarium.mycobank.org/) for identity confirmation. ITS1/4 and β-tubulin could not discriminate the species Fusarium proliferatum but EF1 – alpha could (Figure 2a-c; Supplement 1). For morphological identification, four representative F. proliferatum isolates (FpDP2018JO-01- FpDP2018JO-04) were used. Mycelium were white to dark purple in color, macroconidia (20.5 - 44.5 × 3.3 - 7.5 μm) were thin, slender, with 3-5 septa, and microconidia (4.3 – 12.1 × 2.5 – 4.3 μm) were thin and aseptate (Figure 3). Koch’s postulate was performed on one-year-old seedlings according to Abdalla et al., 2000 method using the same sequenced isolate (FpDP2018JO-01). Five plants were inoculated by injecting 2 mlof inoculum into the crown area using a hypodermic needle and syringe. The inoculum was prepared according to Abdalla et al. (2000). The control set of seedlings (n=5) were injected with sterile distilled water. The experiment was arranged in a CRD design. Symptoms were evaluated three months after inoculation. On seedlings, yellowing of leaflets, discoloration of spines and rachis, and dryness of leaves were observed. Control seedlings showed no symptoms. Re-isolation form the detached leaves and infected seedlings was conducted to satisfy Koch’s postulates. Fusarium sp. was confirmed to be F. proliferatum based on their microscopic characteristics. To our knowledge, this is the first record of F. proliferatum on date palm in Jordan. Date palm in Jordan especially ‘Medjool’ is an important cash crop. Fusarium spp. is an important pathogen that could cause huge losses on date palm and other crops. In Jordan, the pathogen has been isolated from samples from six farms so far, but detailed studies have not been conducted. It would be of importance to survey date palm farms for fungal diseases, test their pathogenicity using several isolates, and characterize them for proper management strategies. F. proliferatum was isolated from roots and leaves of declining date palm trees from many regions of Saudi Arabia and caused symptoms similar to those of F. oxysporum f. sp. albedinis, the causal agent of Bayoud (Abdalla et al. 2000; Saleh et al. 2016). Notonly that, but F. proliferatum was found to have the highest colonization abilities on date palm leaflets and is becoming serious pathogen on date palm (Saleh et al. 2016


2021 ◽  
Vol 22 (2) ◽  
Author(s):  
SEHRISH IFTIKHAR ◽  
WAHEED ANWAR ◽  
Adnan Akhter ◽  
SAJID ALI ◽  
HAFIZ AZHAR ALI KHAN ◽  
...  

Abstract. Iftikhar S, Anwar W, Akhter A, Ali S, Khan HAA, Khurshid M, Haider MS. 2021. Genetic analysis and pathogenic characterization of Alternaria tenuissima induced fruit rot of bitter gourd. Biodiversitas 22: 617-625. Bitter gourd (Momordica charantia Linn.), belongs to Cucurbitaceae family, is widely cultivated in areas with warm climate. In 2017, fruits of bitter gourd-bearing rot symptoms were observed in the Punjab province of Pakistan. The disease-causing fungal isolate was collected from the diseased fruits on potato dextrose agar (PDA). Microscopic examination revealed short conidiophores arose singly, measuring 79.8- 158.5 μm long and 3.94-7.89 μm thick. The size of conidia varied from 25.7 to 46.45 μm and 8.55-14.39 μm in length and width respectively, which were characteristics of Alternaria spp. To confirm the identity and molecular characterization of the isolate, the internal transcribed spacer (ITS) region, translation elongation factor 1 alpha (TEF1-α), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and RNA polymerase II large subunit 2 (RPB2) genes were amplified. The sequence analysis of amplicons and phylogenetic studies specified the homology of isolated Alternaria spp. with the previously reported A. tenuissima in GeneBank. The pathogenicity tests conducted on the fruits of bitter gourd confirmed the disease development with typical Alternaria induced rot symptoms, thus satisfied Koch's postulate. To our knowledge, this is the first record of A. tenuissima causing fruit rot of bitter gourd in Pakistan.


Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1465-1476
Author(s):  
Ana Pérez-Hernández ◽  
Liliana O. Rocha ◽  
Elena Porcel-Rodríguez ◽  
Brett A. Summerell ◽  
Edward C. Y. Liew ◽  
...  

Fusarium solani f. sp. cucurbitae (syn. Neocosmosporum cucurbitae) is one of the most devastating soilborne pathogens affecting the production of cucurbits worldwide. Since its first detection in Almería Province in Spain in the spring of 2007, it has become one of the main soilborne pathogens affecting zucchini production. It has also been reported on melon, watermelon, and squash rootstocks in Spain, representing a high risk of dissemination in the area. The objectives of this study were to investigate the incidence and distribution of this disease in southeastern Spain and characterize isolates collected over 5 years. These strains were characterized on the basis of greenhouse aggressiveness assays on a range of cucurbit hosts, morphological characteristics, and elongation factor 1-α and RNA polymerase II second largest subunit phylogenies. All pathogenic isolates were highly aggressive on zucchini plants, causing a high mortality rate a few weeks after inoculation. The rest of the cucurbit hosts showed differential susceptibility to the pathogen, with cucumber being the least susceptible. Plants belonging to other families remained asymptomatic. Morphological characterization revealed the formation of verticilate monophialides and chlamydospores forming long chains, characteristics not described for this forma specialis. Phylogenetic studies of both the individual loci and combined datasets revealed that all pathogenic isolates clustered together with strong monophyletic support, nested within clade 3 in the F. solani species complex.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 1931-1939 ◽  
Author(s):  
Maria Crespo ◽  
Daniel P. Lawrence ◽  
Mohamed T. Nouri ◽  
David A. Doll ◽  
Florent P. Trouillas

California produces 99.1% of pistachios grown in the United States, and diseases affecting pistachio rootstocks represent a constant challenge to the industry. Field surveys of fungi associated with pistachio rootstocks with symptoms of crown rot and stem canker in three central California counties followed by phylogenetic analyses of translation elongation factor 1-α and second largest subunit of RNA polymerase II gene fragments identified three Fusarium species (Fusarium equiseti, Fusarium oxysporum, and Fusarium proliferatum) and two Neocosmospora species (Neocosmospora falciformis and Neocosmospora solani). F. oxysporum and N. falciformis were the fungal species most frequently recovered from symptomatic pistachio trees. Inoculations of detached twigs of cultivar Kerman pistachio Pioneer Gold I and clonal University of California, Berkeley I (UCBI) rootstocks showed that all five species could colonize pistachio wood and cause vascular discolorations. Pathogenicity tests in potted pistachio trees completed Koch’s postulates and confirmed that F. oxysporum, F. proliferatum, N. falciformis, and N. solani were capable of producing rot and discoloration in stems of clonal UCBI rootstocks, the most widely planted pistachio rootstock in California. To our knowledge, this study is the first to present insights into the biodiversity and biology of Fusarium and Neocosmospora species associated with pistachio trees in California.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 211
Author(s):  
Xiaoli Chang ◽  
Li Yan ◽  
Muhammd Naeem ◽  
Muhammad Ibrahim Khaskheli ◽  
Hao Zhang ◽  
...  

Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large loss in soybean production. Maize/soybean relay strip intercropping has significant advantages on the increase of crop yields and efficient use of agricultural resources, but its effects on the occurrence and pathogen population of soybean root rot are rarely known. In this study, root rot was investigated in the fields of the continuous maize/soybean strip relay intercropping and soybean monoculture. Fusarium species were isolated from diseased soybean roots and identified based on sequence analysis of translation elongation factor 1α (EF-1α) and RNA polymerase II second largest subunit (RPB2), and the diversity and pathogenicity of these species were also analyzed. Our results showed that intercropping significantly decreased soybean root rot over monoculture. A more diverse Fusarium population including Fusarium solani species complex (FSSC), F. incarnatum-equiseti species complex (FIESC), F. oxysporum, F. fujikuroi, F. proliferatum and F. verticillioides, F. graminearum and F. asiaticum was identified from intercropping while FSSC, FIESC, F. oxysporum, F. commune, F. asiaticum and F. meridionale were found from monoculture. All Fusarium species caused soybean root infection but exhibited distinct aggressiveness. The most aggressive F. oxysporum was more frequently isolated in monoculture than intercropping. FSSC and FIESC were the dominant species complex and differed in their aggressiveness. Additionally, F. fujikuroi, F. proliferatum and F. verticillioides were specifically identified from intercropping with weak or middle aggressiveness. Except for F. graminearum, F. meridionale and F. asiaticum were firstly reported to cause soybean root rot in China. This study indicates maize/soybean relay strip intercropping can reduce soybean root rot, change the diversity and aggressiveness of Fusarium species, which provides an important reference for effective management of this disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Bo Xia ◽  
Dongwei Zhang ◽  
Yuanhua Wu ◽  
Jianzhong Hu ◽  
Yue Liang ◽  
...  

Sea buckthorn(Hippophae rhamnoides L.) is a flowering shrub native to cold-temperate regions of Eurasia, which is also valuable for its berries and leaves containing various vitamins and flavonoids (Pundir et al. 2021). In late June 2020, high mortality (more than 70%) was observed in sea buckthorn in a 1.6-ha seedling nursery in Chaoyang City, Liaoning province, China, where 16 Chinese and Russian cultivars (cv.) had been planted since 2014 (cv. Shenqiuhong, eshi01 through eshi15). The mortality of two introduced sea buckthorn varieties (eshi02, eshi04) was 100% (125 trees died in total). The symptoms include massive drooping leaves and dried-up stems on 6-year-old infected trees. Pieces of tree roots and stems with brown discoloration in the xylem vessels were selected. Small tissue fragments (0.2-0.5 cm) were surface disinfested (3 min in 75% ethanol, rinsed with sterile distilled water), air-dried, and placed on potato dextrose agar (PDA) medium for 5 days at 25°C in the dark. A fungus was consistently isolated from both diseased roots and stems tissues, and a representative isolate (LC-1) was harvested. Genomic DNA was extracted for amplification and sequencing of the partial translation elongation factor-1α (EF1 and EF2 primers, accession Nos. MZ669853) (O’Donnell et al. 1998) and RNA polymerase II second largest subunit (RPB2) (7cf/11aR primers, accession Nos. MZ669854) (O’Donnell et al. 2007). The sequences were further analyzed at the Fusarium MLST (https://fusarium.mycobank.org/) for identity confirmation, and showed 99.8% (over 95.2% query coverage) and 96.4% (over 88.4% query coverage) similarity to Fusarium proliferatum (NRRL 13584, 13591). Isolates on Spezieller Nahrstoffarmer agar (SNA) produced abundant aerial white mycelia and yellow pigmentation. The 30 macroconidia measured ranged from 28.5 - 62.5 × 3.2 – 5.4 μm, were thin, slender, with 3-5 septa. The aseptate microconidia ranged from 4.7 – 13.6 × 2.2 – 4.3 μm (n = 30). Pathogenicity tests were performed on healthy, potted 1-year-old sea buckthorn seedlings (cv. eshi05) using two isolates in a greenhouse at 25 °C, 80% relative humidity, and 12-hour light/dark photoperiod. Ten potted seedlings were inoculated on the stems by placing a 5-mm-diameter mycelial plug (5-day-old PDA cultures for each isolate) into the surface of a wound created with a needle, and the inoculation sites were covered with Parafilm to maintain moisture. Ten seedlings were inoculated with PDA plugs as controls. Six to ten days after inoculation, color of the leaves in the middle of the stems was variegated, and then dark necrotic lesions on leaf margins were observed. Three weeks after inoculation, 80% of inoculated stems were wilted, while control plants remained asymptomatic. The pathogen was consistently re-isolated and the recovered isolates were identified as F. proliferatum by amplifying the EF-1α gene. The typical symptoms on inoculated plants were dark to brown necrotic lesions on chlorotic leaves initially, and black withered stems in the terminal stage, similar to those observed on sea buckthorn trees infected with Fusarium sporotrichioides in Gansu and Heilongjiang provinces (Song et al. 2010; Xia et al. 2021). To our knowledge, this is the first report of sea buckthorn stem wilt caused by F. proliferatum in Liaoning province, China, which will be beneficial for expanding knowledge of Fusarium disease in sea buckthorn and provide more information for sustainable disease management in sea buckthorn.


Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 472
Author(s):  
Marcele Vermeulen ◽  
Lisa A. Rothmann ◽  
Wijnand J. Swart ◽  
Marieka Gryzenhout

Trials are currently being conducted in South Africa to establish Amaranthus cruentus as a new pseudocereal crop. During recent surveys, Fusarium species were associated with weevil damage in A. cruentus fields. Preliminary studies showed that some of these Fusarium species grouped into two distinct clades within the F. fujikuroi species complex. The aim of this study was to characterize these isolates based on the morphology and phylogeny of the translation elongation factor 1α (TEF1α) gene region, ß-tubulin 2 (ßT) gene region and RNA polymerase II subunit (RPB2), and to determine if these isolates are pathogenic to A. cruentus. Phylogenetic and morphological studies showed that these two clades represent two novel species described here as F. casha and F. curculicola. Both species were shown to have the potential to be pathogenic to A. cruentus during routine greenhouse inoculation tests. While isolations indicate a possible association between these two species and weevils, further research is needed to understand this association and the role of weevils in disease development involving F. casha and F. curculicola in A. cruentus.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiaoyan Yu ◽  
Jing Zhang ◽  
Lifeng Guo ◽  
Aoran Yu ◽  
Xiangjing Wang ◽  
...  

Muskmelon is an economically important crop in the world, especially in China, the largest producer of muskmelon with an annual output up to 12.7 million tonnes (Gómez-García et al. 2020). Since 2018, fruit rot was observed on muskmelon in Malianzhuang Base, the main muskmelon producing area in Shandong Province, whose disease incidence was about 25-30%. Water-soaked dark brown spots were initially appeared on the side of the fruit near the ground, then gradually expanded and covered with white mold with time. To isolate the pathogens, ten muskmelon fruits with typical symptoms were collected from different greenhouses in the base. Small tissues taken from the edge of the diseased and healthy tissues were immersed in 1% NaClO for 2 min, then soaked in 75% ethanol for 30 s, and rinsed 3 times with sterile distilled water (SDW). The sterilized tissues were naturally dried and placed on potato dextrose agar (PDA) amended with streptomycin sulfate (50 mg/L) for 7 days at 28℃. The emerging fungal mycelia were transferred to fresh PDA using the hyphal tip technology. Ten colonies were purified by single spore method and cultured on PDA for 7 days at 28℃ in the dark for morphological and molecular analyses. All colonies were flocculent with abundant white to light purple aerial hyphae, and the undersides of the colonies were observed to be from white to purple over time. Microconidia produced on PDA were hyaline, fusiform, ovoid, single cell without septum, and 4.5 to 12.7 × 2.0 to 3.6 μm in size (n=50). Macroconidia produced on carboxymethylcellulose agar (CMC) were slightly curved at both ends with three to five septa, and 17.6 to 35.7 × 2.8 to 4.0 μm in size (n=30). According to the morphological characteristics, these isolates were preliminarily identified as Fusarium sp. (Leslie and Summerell 2006). To further identify these isolates, genomic DNA of five isolates was extracted by CTAB method (Wu et al. 2001). The internal transcribed spacer (ITS) region of ribosomal DNA, translation elongation factor 1-α (TEF1) region, and the RNA polymerase II second largest subunit (RPB2) were amplified by PCR amplification with primers ITS1/ITS4, EF-1/EF-2, and RPB2-5F2/fRPB2-7cR, respectively (White et al. 1990; O’Donnell et al. 2008; Liu et al. 1999). Sequences of the five isolates were identical. The ITS, EF1-α, and RPB2 gene sequences of isolate NEAU-Mf-10-2 were submitted to NCBI GenBank with accession numbers of MZ950914, MZ960928, and MZ960929, respectively, having 100% similarity to those of Fusarium proliferatum (MK372368, MK952799 and MN245721). Phylogenetic trees were constructed based on the concatenated sequences of EF1-α and RPB2 genes using neighbour-joining and maximum-likelihood algorithms with MEGA 7.0. Two similar tree topologies both showed isolate NEAU-Mf-10-2 clustered with F. proliferatum NRRL 43665. Therefore, isolate NEAU-Mf-10-2 was identified as F. proliferatum based on morphological characteristics and phylogenetic analysis. To fulfill Koch’s postulates, ten muskmelon fruits (var. Tianbao) were soaked in 2% NaClO for 2 min, and then washed three times with SDW. Muskmelon fruits were inoculated by injecting conidia suspension (200 μL, 1×106 spores/mL) with a sterile injector. Ten other surface sterilized muskmelon fruits inoculated with sterile water were used as control. The fruits were placed in a light incubator at 28℃ with 12h light cycles for 7 days. All inoculated fruits showed symptoms highly similar to those of infected muskmelon fruits observed in the field. No symptoms were observed on fruits used as control. The Fusarium isolates were successfully re-isolated from the symptomatic fruits, and identified based on above morphological and molecular biological methods. Previous studies have reported that F. proliferatum can infect Polygonatum cyrtonema, Salvia miltiorrhiza, Allium cepa, A. sativum, and so on. To our knowledge, this is the first report of F. proliferatum causing fruit rot on muskmelon in China, which will provide basic information for designing effective prevention and control strategies on this disease.


Sign in / Sign up

Export Citation Format

Share Document