Development of a core collection from Sri Lankan traditional rice (Oryza sativa) varieties for phenotypic and genetic diversity

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shyama Weerakoon ◽  
Seneviratne Somaratne

Abstract. Weerakoon SR, Somaratne S. 2021. Development of a core collection from Sri Lankan traditional rice (Oryza sativa) varieties for phenotypic and genetic diversity. Nusantara Bioscience 13: 61-67. A collection of over 2000 traditional rice varieties are conserved at Gene Bank, Plant Genetics Resource Center, Sri Lanka. Oryza sativa varieties grown in Sri Lanka from ancient times to the middle of the last century are known as traditional rice. These varieties show adaptability to biotic and abiotic stresses and, an important component of biodiversity of Sri Lanka. A detailed understanding of the diversity of traditional rice varieties is essential for effective utilization of rice genetic resources and identification of potential parents possessing valuable genetic traits for future crop improvement. Study objectives were phenotypic and molecular characterization of one-hundred traditional rice varieties and to identify a core collection for phenotypic and genetic diversity. Rice varieties were grown in a plant house following RCBD with 4 replicates and 5 plants per replicate. Thirty-two agro-morphological characters were observed/collected. Genomic DNA was extracted from 20-days-old seedlings. Thirty?three microsatellite (Simple Sequence Repeat-SSR) primer pairs were used to assay genetic variation and PCR products were subjected to fragment analysis by capillary electrophoresis. Descriptive statistics and basic inferential statistical analyses were performed to access variation of agro-morphological characters among rice varieties. Cluster analysis and Multidimensional scaling produced 07 groups which were further analyzed using Classification and Regression Analysis to extract the diagnostic agro-morphological features. Groups of rice varieties were characterized by lemma palea color, awn color at maturity, seedling height, and flag-leaf angle. Traditional varieties represent distant clusters on agro-morphological features. Molecular analyses revealed all 33 loci displayed polymorphism (66.7-96.9%) among 100 traditional rice varieties with a total of 387 alleles identified with an average of 11.72 alleles per variety. All varieties were genetically structured into fifteen well-separated groups. UPGMA analysis based on Jaccard's similarity separated varieties into 05 major clusters. Genetic diversity information is useful in the efficient use of Sri Lankan rice germplasm and managing in situ and ex situ germplasm collections in conserving traditional rice varieties.

Author(s):  
S. Somaratne ◽  

Oryza sativa L. varieties grown in Sri Lanka from ancient times to the middle of the last century are known as traditional rice varieties and a collection of over 2000 traditional rice accessions conserved at Gene Bank, Plant Genetics Resource Center (PGRC), Peradeniya, Sri Lanka. Farmers preferred traditional rice varieties for their adaptability to biotic and abiotic stresses and are an important component of the biodiversity of Sri Lanka. A detailed understanding of the genetic structure and diversity of traditional rice varieties is essential for the effective utilization of rice genetic resources and identification of potential parents possessing valuable genetic traits for future crop improvement in rice breeding programmes. The objective of the present study was phenotypic and molecular characterization of one hundred (100) traditional rice accession/varieties collected from PGRC, Sri Lanka and identification of a broad diversity panel for these traditional rice accessions/varieties. Rice varieties were grown in a plant house following Randomized Complete Block design with 4 replicates and 5 plants per each replicate. Thirty-two (32) agro-morphological characters were observed. Green leaves of rice varieties were individually collected from 20 day-old seedlings for gDNA extraction using Plant genomic DNA kit followed by the CTAB protocol. Thirty‐three microsatellite (Simple Sequence Repeat – SSR) primer pairs were used to assay genetic variation. DNA amplification was carried out using a thermal cycler and PCR products were subjected to fragment analysis by capillary electrophoresis. Descriptive statistics and basic inferential statistical analyses were performed to access the variation of agro-morphological characters among rice varieties. Data were subjected to cluster analysis (CA) to examine the grouping tendencies and supplemented with Multidimensional scaling (MDS) to explore the procedural differences in the outcome. CA and MDS produced seven (07) groups which were further analyzed using Classification and Regression Analysis (CART) to extract the diagnostic agro-morphological features. Based on CART result, groups of rice varieties were characterized by lemma–palea color, presence or absence of awn, seedling height, and flag-leaf angle. Traditional rice accessions/varieties represent distant clusters on agro-morphological features. Molecular analyses revealed, all 33 loci displayed polymorphism (66.7-96.9 %) among 100 traditional rice accessions/varieties with a total of 387 alleles identified with an average of 11.72 alleles per accession. AMOVA results showed that 34% of the variation distributed among accessions/varieties, 59% of among individuals and 7% within individual indicating a comparatively high level of genetic differentiation among individuals of selected rice accessions/varieties. Structure analysis results illustrated that all 100 accessions/varieties were genetically structured into fifteen well-separated groups, high ΔK peak was recorded at K=15, K= 5, K= 19 and K= 2 respectively. UPGMA analysis based on Jaccard's similarity separated the accessions into five (5) major clusters. A cophenetic correlation with r=0.786 strongly supported the clustering pattern of UPGMA dendrogram. A principal coordinate analysis (PCoA) also confirmed the UPGMA clusters. The genetic diversity information obtained will be useful in efficient use of Sri Lankan rice germplasm collection in breeding programmes. This information will also be useful in management of in situ and ex situ germplasm collections in conservation programs for traditional rice varieties.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Elpitiya Udari Uvindhya Rathnathunga ◽  
Sudarshanee Geekiyanage

AbstractSri Lankan traditional rice varieties consist of more than one accession mostly which, exhibit a wide variation in morphological characters, flowering time and yield. The objective of this study was to evaluate the diversity based on days to flowering (DF) and 12 morphological characters of two Sri Lankan traditional rice varieties Pachchaperumal and Suduru samba comprising of 13 and 7 accessions respectively. DF of Pachchaperumal and Suduru samba varied from 60 - 72 and 79 - 99 days respectively. Vegetative morphological characters and yield components also varied among Pachchaperumal and Suduru samba accessions while pericarp colour, grain width, and length were distinct characters between the two varieties. According to the hierarchical cluster analysis, 2 major clusters were identified at the rescale distance of 25 separating accessions of Pachchaperumal and Suduru samba except for accession 3136 of Pachchaperumal, which was located in Sudura samba cluster. Seven clusters were derived at rescaled distance of 5 where accessions of similar quantitative and qualitative morphological characters were clustered together. There were negative correlations between DF and selected yield components in contrast to positive correlations between DF and selected vegetative growth parameters. Our results may be useful in the determination of identity of accessions belonging to the same variety, which could be further supported by molecular analysis.


2011 ◽  
Vol 9 (2) ◽  
pp. 224-228 ◽  
Author(s):  
Gowri Rajkumar ◽  
Jagathpriya Weerasena ◽  
Kumudu Fernando ◽  
Athula Liyanage

Sri Lanka has a valuable repository of germplasm collection due to the availability of a large number of different traditional and improved rice varieties. Molecular techniques can increase the effectiveness of traditional technologies in assessing genetic diversity. Amplified fragment length polymorphism (AFLP) was used to evaluate the genetic diversity among rice varieties available in the germplasm collection of Plant Genetic Resources Centre, Sri Lanka. AFLP analysis of rice varieties using ten different primer combinations yielded a total of 772 polymorphic bands (98.4%). Genetic similarities were estimated using Jaccard's (J) similarity coefficient. Unweighted pair group method with arithmetic mean (UPGMA)-based dendrogram was constructed. Genetic similarities varied from 0.073 to 0.565. Cluster analysis by genetic similarity divided the accessions into four main groups. The Cophenetic correlation with r = 0.781 indicated high confidence of AFLP data to group the varieties in UPGMA clusters. Principal component analysis further confirmed the patterns obtained by the cluster analysis. The results revealed very high genetic diversity at molecular level among the Sri Lankan rice varieties used in this study.


2018 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Joko Prasetiyono ◽  
Nurul Hidayatun ◽  
Tasliah Tasliah

<p>Indonesia is rich in rice genetic resources, however, only a small number has been used in variety improvement programs. This study aimed to determine the genetic diversity of Indonesian rice varieties using 6K SNP markers. The study was conducted at ICABIOGRAD for DNA isolation and IRRI for SNP marker analysis. Genetic materials were 53 rice genotypes consisting of 49 varieties and 4 check genotypes. SNP markers used were 6K loci. Results showed that among the markers analyzed, only 4,606 SNPs (76.77%) were successfully read. The SNP markers covered all twelve rice chromosomes of 945,178.27 bp. The most common allele observed was GG, whereas the least allele was TG. Dendrograms of the 53 rice varieties analyzed with 4,606 SNPs demonstrated several small groups containing genotypic mixtures between indica and japonica rice, and no groups were found to contain firmly indica or japonica type. Structure analysis (K = 2) with value of 0.8 showed that the 53 rice varieties were divided into several groups and each group consisted of 4 japonica, 2 tropical japonica, 46 indica, and 1 aus rice type, respectively. IR64 and Ciherang proved to have an indica genome, while Rojolele has japonica one. Dupa and Hawara Bunar, usually grouped into tropical japonica rice, were classified as indica type, and Hawara Bunar has perfectly 100% indica type. The results of this study indicated that rice classification (indica-japonica) which is usually classified based only on morphological characters, e.g. grain and leaf shapes, is not enough and classification based on SNP markers should be considered for that purpose.</p>


2015 ◽  
Vol 26 (2) ◽  
pp. 317 ◽  
Author(s):  
H.K.D.H. Fernando ◽  
T.J.C. Kajenthini ◽  
S.P. Rebeira ◽  
T.C. Bamunuarachchige ◽  
H.A.M. Wickramasinghe

1988 ◽  
Vol 24 (3) ◽  
pp. 311-320 ◽  
Author(s):  
D. M. Maurya ◽  
A. Bottrall ◽  
J. Farrington

SUMMARYThe present structure of plant breeding and seed multiplication in India is highly centralized. Furthermore, only a small number of new varieties is officially released each year. The system therefore appears inappropriate for the requirements of the large proportion of Indian farmers located in risk-prone and highly diverse environments. An alternative strategy is described whose central feature is close matching of the characteristics of farmers' traditional rice varieties with those of advanced breeders' lines. A selection from these lines is then distributed in small quantities for on-farm trials managed by farmers themselves. If the success of these initial efforts is to be sustained, a more decentralized approach to breeding and multiplication will be necessary.


Sign in / Sign up

Export Citation Format

Share Document