Integrated Reservoir Characterization to Provide Insight into Porosity and Permeability in a Mixed Carbonate–Siliciclastic Reservoir

Author(s):  
Beth Vanden Berg ◽  
Stephanie LeBlanc ◽  
G. Michael Grammer
2021 ◽  
Author(s):  
Said Beshry Mohamed ◽  
Sherif Ali ◽  
Mahmoud Fawzy Fahmy ◽  
Fawaz Al-Saqran

Abstract The Middle Marrat reservoir of Jurassic age is a tight carbonate reservoir with vertical and horizontal heterogeneous properties. The variation in lithology, vertical and horizontal facies distribution lead to complicated reservoir characterization which lead to unexpected production behavior between wells in the same reservoir. Marrat reservoir characterization by conventional logging tools is a challenging task because of its low clay content and high-resistivity responses. The low clay content in Marrat reservoirs gives low gamma ray counts, which makes reservoir layer identification difficult. Additionally, high resistivity responses in the pay zones, coupled with the tight layering make production sweet spot identification challenging. To overcome these challenges, integration of data from advanced logging tools like Sidewall Magnetic Resonance (SMR), Geochemical Spectroscopy Tool (GST) and Electrical Borehole Image (EBI) supplied a definitive reservoir characterization and fluid typing of this Tight Jurassic Carbonate (Marrat formation). The Sidewall Magnetic resonance (SMR) tool multi wait time enabled T2 polarization to differentiate between moveable water and hydrocarbons. After acquisition, the standard deliverables were porosity, the effective porosity ratio, and the permeability index to evaluate the rock qualities. Porosity was divided into clay-bound water (CBW), bulk-volume irreducible (BVI) and bulk-volume moveable (BVM). Rock quality was interpreted and classified based on effective porosity and permeability index ratios. The ratio where a steeper gradient was interpreted as high flow zones, a gentle gradient as low flow zones, and a flat gradient was considered as tight baffle zones. SMR logging proved to be essential for the proper reservoir characterization and to support critical decisions on well completion design. Fundamental rock quality and permeability profile were supplied by SMR. Oil saturation was identified by applying 2D-NMR methods, T1/T2 vs. T2 and Diffusion vs. T2 maps in a challenging oil-based mud environment. The Electrical Borehole imaging (EBI) was used to identify fracture types and establish fracture density. Additionally, the impact of fractures to enhance porosity and permeability was possible. The Geochemical Spectroscopy Tool (GST) for the precise determination of formation chemistry, mineralogy, and lithology, as well as the identification of total organic carbon (TOC). The integration of the EBI, GST and SMR datasets provided sweet spots identification and perforation interval selection candidates, which the producer used to bring wells onto production.


2021 ◽  
pp. 3570-3586
Author(s):  
Mohanad M. Al-Ghuribawi ◽  
Rasha F. Faisal

     The Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, where the most common porosity types were the primary (interparticle) and secondary (moldic and vugs) . The main diagenetic process that occurred in YA0, YA2, and YB1 is cementation, which led to the filling of pore spaces by cement and subsequently decreased the reservoir quality (porosity and permeability). Based on the results of the final digital  computer interpretation and processing (CPI) performed by using the Techlog software, the units YA1 and YB2 have the best reservoir properties. The unit YB2 is characterized by a good effective porosity average, low water saturation, good permeability, and large thickness that distinguish it from other reservoir units.


2021 ◽  
Author(s):  
Fadzlin Hasani Kasim ◽  
Budi Priyatna Kantaatmadja ◽  
Wan Nur Wan M Zainudin ◽  
Amita Ali ◽  
Hasnol Hady Ismail ◽  
...  

Abstract Predicting the spatial distribution of rock properties is the key to a successful reservoir evaluation for hydrocarbon potential. However, a reservoir with a complex environmental setting (e.g. shallow marine) becomes more challenging to be characterized due to variations of clay, grain size, compaction, cementation, and other diagenetic effects. The assumption of increasing permeability value with an increase of porosity may not be always the case in such an environment. This study aims to investigate factors controlling the porosity and permeability relationships at Lower J Reservoir of J20, J25, and J30, Malay Basin. Porosity permeability values from routine core analysis were plotted accordingly in four different sets which are: lithofacies based, stratigraphic members based, quartz volume-based, and grain-sized based, to investigate the trend in relating porosity and permeability distribution. Based on petrographical studies, the effect of grain sorting, mineral type, and diagenetic event on reservoir properties was investigated and characterized. The clay type and its morphology were analyzed using X-ray Diffractometer (XRD) and Spectral electron microscopy. Results from porosity and permeability cross-plot show that lithofacies type play a significant control on reservoir quality. It shows that most of the S1 and S2 located at top of the plot while lower grade lithofacies of S41, S42, and S43 distributed at the middle and lower zone of the plot. However, there are certain points of best and lower quality lithofacies not located in the theoretical area. The detailed analysis of petrographic studies shows that the diagenetic effect of cementation and clay coating destroys porosity while mineral dissolution improved porosity. A porosity permeability plot based on stratigraphic members showed that J20 points located at the top indicating less compaction effect to reservoir properties. J25 and J30 points were observed randomly distributed located at the middle and bottom zone suggesting that compaction has less effect on both J25 and J30 sands. Lithofacies description that was done by visual analysis through cores only may not correlate-able with rock properties. This is possibly due to the diagenetic effect which controls porosity and permeability cannot visually be seen at the core. By incorporating petrographical analysis results, the relationship between porosity, permeability, and lithofacies can be further improved for better reservoir characterization. The study might change the conventional concept that lower quality lithofacies does not have economic hydrocarbon potential and unlock more hydrocarbon-bearing reserves especially in these types of environmental settings.


2000 ◽  
Vol 3 (05) ◽  
pp. 444-456 ◽  
Author(s):  
A. Bahar ◽  
M. Kelkar

Summary Reservoir studies performed in the industry are moving towards an integrated approach. Most data available for this purpose are mainly from well cores and/or well logs. The translation of these data into petrophysical properties, i.e., porosity and permeability, at interwell locations that are consistent with the underlying geological description is a critical process. This paper presents a methodology that can be used to achieve this goal. The method has been applied at several field applications where full reservoir characterization study is conducted. The framework developed starts with a geological interpretation, i.e., facies and petrophysical properties, at well locations. A new technique for evaluating horizontal spatial relationships is provided. The technique uses the average properties of the vertical data to infer the low-frequency characteristics of the horizontal data. Additionally, a correction in calculating the indicator variogram, that is used to capture the facies' spatial relationship, is provided. A new co-simulation technique to generate petrophysical properties consistent with the underlying geological description is also developed. The technique uses conditional simulation tools of geostatistical methodology and has been applied successfully using field data (sandstone and carbonate fields). The simulated geological descriptions match well the geologists' interpretation. All of these techniques are combined into a single user-friendly computer program that works on a personal computer platform. Introduction Reservoir characterization is the process of defining reservoir properties, mainly, porosity and permeability, by integration of many data types. An ultimate goal of reservoir characterization is improved prediction of the future performance of the reservoir. But, before we reach that goal a journey through various processes must come to pass. The more exhaustive the processes, the more accurate the prediction will be. The most important processes in this journey are the incorporation and analysis of available geological information.1–3 The most common data types available for this purpose are in the form of well logs and/or well cores. The translation of these data into petrophysical properties, i.e., porosity and permeability, at interwell locations that are consistent with the underlying geological description is a critical step. The work presented in this paper provides a methodology to achieve this goal. This methodology is based on the geostatistical technique of conditional simulation. The step-by-step procedure starts with the work of the geologist where the isochronal planes across the whole reservoir are determined. This step is followed by the assignment of facies and petrophysical properties at well locations for each isochronal interval. Using these results, spatial analysis of the reservoir attributes, i.e., facies, porosity, and permeability, can be conducted in both vertical and horizontal directions. Due to the nature of how the data are typically distributed, i.e., abundant in the vertical direction but sparse in the horizontal direction, this step is far from a simple task, and practitioners have used various approximations to overcome this problem.4–6 A new technique for evaluating the horizontal spatial relationship is proposed in this work. The technique uses the average properties of the vertical data to infer the low-frequency characteristics of the horizontal data. Additionally, a correction in calculating the indicator variogram, that is used to capture the facies spatial relationship, is provided. Once the spatial relationship of the reservoir attributes has been established, the generation of internally consistent facies and petrophysical properties at the gridblock level can be done through a simulation process. Common practice in the industry is to perform conditional simulation of petrophysical properties by adapting a two-stage approach.7–10 In the first stage, the geological description is simulated using a conditional simulation technique such as sequential indicator simulation or Gaussian truncated simulation. In the second stage, petrophysical properties are simulated for each type of geological facies/unit using a conditional simulation technique such as sequential Gaussian simulation or simulated annealing. The simulated petrophysical properties are then filtered using the generated geological simulation to produce the final simulation result. The drawback of this approach is its inefficiency, since it requires several simulations, and hence, intensive computation time. Additionally, the effort to jointly simulate or to co-simulate interdependent attributes such as facies, porosity, and permeability has been discussed by several authors.11–13 The techniques used by these authors have produced useful results. Common disadvantages of these techniques are the requirement of tedious inference and modeling of covariances and cross covariances. Also, a large amount of CPU time is required to solve the numerical problem of a large co-kriging system. Another co-simulation technique that eliminates the requirement of solving the full co-kriging system has been proposed by Almeida.14 The technique is based on a collocated co-kriging and a Markov-type hypothesis. This hypothesis simplifies the inference and modeling of the cross covariances. Since the collocated technique is used, an assumption of a linear relationship among the attributes needs to be applied. The co-simulation technique developed in this work avoids the two-stage approach described above. The technique is based on a combination of simultaneous sequential Gaussian simulations and a conditional distribution technique. Using this technique there is no large co-kriging system to solve and there is no need to assume a relationship among reservoir attributes. The absence of co-kriging from the process also means that the user is free from developing the cross variograms. This improves the practical application of the technique.


2020 ◽  
Vol 10 (8) ◽  
pp. 3157-3177 ◽  
Author(s):  
Sameer Noori Ali Al-Jawad ◽  
Muhammad Abd Ahmed ◽  
Afrah Hassan Saleh

Abstract The reservoir characterization and rock typing is a significant tool in performance and prediction of the reservoirs and understanding reservoir architecture, the present work is reservoir characterization and quality Analysis of Carbonate Rock-Types, Yamama carbonate reservoir within southern Iraq has been chosen. Yamama Formation has been affected by different digenesis processes, which impacted on the reservoir quality, where high positively affected were: dissolution and fractures have been improving porosity and permeability, and destructive affected were cementation and compaction, destroyed the porosity and permeability. Depositional reservoir rock types characterization has been identified depended on thin section analysis, where six main types of microfacies have been recognized were: packstone-grainstone, packstone, wackestone-packstone, wackestone, mudstone-wackestone, and mudstone. By using flow zone indicator, four groups have been defined within Yamama Formation, where the first type (FZI-1) represents the bad quality of the reservoir, the second type (FZI-2) is characterized by the intermediate quality of the reservoir, third type (FZI-3) is characterized by good reservoir quality, and the fourth type (FZI-4) is characterized by good reservoir quality. Six different rock types were identified by using cluster analysis technique, Rock type-1 represents the very good type and characterized by low water Saturation and high porosity, Rock type-2 represents the good rock type and characterized by low water saturation and medium–high porosity, Rock type-3 represents intermediate to good rock type and characterized by low-medium water saturation and medium porosity, Rock type-4 represents the intermediate rock type and characterized by medium water saturation and low–medium porosity, Rock type-5 represents intermediate to bad rock type and characterized by medium–high water saturation and medium–low porosity, and Rock type-6 represents bad rock type and characterized by high water saturation and low porosity. By using Lucia Rock class typing method, three types of rock type classes have been recognized, the first group is Grain-dominated Fabrics—grainstone, which represents a very good rock quality corresponds with (FZI-4) and classified as packstone-grainstone, the second group is Grain-dominated Fabrics—packstone, which corresponds with (FZI-3) and classified as packstone microfacies, the third group is Mud-dominated Fabrics—packstone, packstone, correspond with (FZI-1 and FZI-2) and classified as wackestone, mudstone-wackestone, and mudstone microfacies.


2021 ◽  
Author(s):  
Ahmed Reda Ali ◽  
Makky Sandra Jaya ◽  
Ernest A. Jones

Abstract Petrophysical evaluation is a crucial task for reservoir characterization but it is often complicated, time-consuming and associated with uncertainties. Moreover, this job is subjective and ambiguous depending on the petrophysicist's experience. Utilizing the flourishing Artificial Intelligence (AI)/Machine Learning (ML) is a way to build an automating process with minimal human intervention, improving consistency and efficiency of well log prediction and interpretation. Nowadays, the argument is whether AI-ML should base on a statistically self-calibrating or knowledge-based prediction framework! In this study, we develop a petrophysically knowledge-based AI-ML workflow that upscale sparsely-sampled core porosity and permeability into continuous curves along the entire well interval. AI-ML focuses on making predictions from analyzing data by learning and identifying patterns. The accuracy of the self-calibrating statistical models is heavily dependent on the volume of training data. The proposed AI-ML workflow uses raw well logs (gamma-ray, neutron and density) to predict porosity and permeability over the well interval using sparsely core data. The challenge in building the AI-ML model is the number of data points used for training showed an imbalance in the relative sampling of plugs, i.e. the number of core data (used as target variable) is less than 10%. Ensemble learning and stacking ML approaches are used to obtain maximum predictive performance of self-calibrating learning strategy. Alternatively, a new petrophysical workflow is established to debrief the domain experience in the feature selection that is used as an important weight in the regression problem. This helps ML model to learn more accurately by discovering hidden relationships between independent and target variables. This workflow is the inference engine of the AI-ML model to extract relevant domain-knowledge within the system that leads to more accurate predictions. The proposed knowledge-driven ML strategy achieved a prediction accuracy of R2 score = 87% (Correlation Coefficient (CC) of 96%). This is a significant improvement by R2 = 57% (CC = 62%) compared to the best performing self-calibrating ML models. The predicted properties are upscaled automatically to predict uncored intervals, improving data coverage and property population in reservoir models leading to the improvement of the model robustness. The high prediction accuracy demonstrates the potential of knowledge-driven AI-ML strategy in predicting rock properties under data sparsity and limitations and saving significant cost and time. This paper describes an AI-ML workflow that predicts high-resolution continuous porosity and permeability logs from imbalanced and sparse core plug data. The method successfully incorporates new type petrophysical facies weight as a feature augmentation engine for ML domain-knowledge framework. The workflow consisted of petrophysical treatment of raw data includes log quality control, preconditioning, processing, features augmentation and labelling, followed by feature selection to impersonate domain experience.


2021 ◽  
Author(s):  
Mohammed A. Abbas ◽  
Watheq J. Al-Mudhafar

Abstract Estimating rock facies from petrophysical logs in non-cored wells in complex carbonates represents a crucial task for improving reservoir characterization and field development. Thus, it most essential to identify the lithofacies that discriminate the reservoir intervals based on their flow and storage capacity. In this paper, an innovative procedure is adopted for lithofacies classification using data-driven machine learning in a well from the Mishrif carbonate reservoir in the giant Majnoon oil field, Southern Iraq. The Random Forest method was adopted for lithofacies classification using well logging data in a cored well to predict their distribution in other non-cored wells. Furthermore, three advanced statistical algorithms: Logistic Boosting Regression, Bagging Multivariate Adaptive Regression Spline, and Generalized Boosting Modeling were implemented and compared to the Random Forest approach to attain the most realistic lithofacies prediction. The dataset includes the measured discrete lithofacies distribution and the original log curves of caliper, gamma ray, neutron porosity, bulk density, sonic, deep and shallow resistivity, all available over the entire reservoir interval. Prior to applying the four classification algorithms, a random subsampling cross-validation was conducted on the dataset to produce training and testing subsets for modeling and prediction, respectively. After predicting the discrete lithofacies distribution, the Confusion Table and the Correct Classification Rate Index (CCI) were employed as further criteria to analyze and compare the effectiveness of the four classification algorithms. The results of this study revealed that Random Forest was more accurate in lithofacies classification than other techniques. It led to excellent matching between the observed and predicted discrete lithofacies through attaining 100% of CCI based on the training subset and 96.67 % of the CCI for the validating subset. Further validation of the resulting facies model was conducted by comparing each of the predicted discrete lithofacies with the available ranges of porosity and permeability obtained from the NMR log. We observed that rudist-dominated lithofacies correlates to rock with higher porosity and permeability. In contrast, the argillaceous lithofacies correlates to rocks with lower porosity and permeability. Additionally, these high-and low-ranges of permeability were later compared with the oil rate obtained from the PLT log data. It was identified that the high-and low-ranges of permeability correlate well to the high- and low-oil rate logs, respectively. In conclusion, the high quality estimation of lithofacies in non-cored intervals and wells is a crucial reservoir characterization task in order to obtain meaningful permeability-porosity relationships and capture realistic reservoir heterogeneity. The application of machine learning techniques drives down costs, provides for time-savings, and allows for uncertainty mitigation in lithofacies classification and prediction. The entire workflow was done through R, an open-source statistical computing language. It can easily be applied to other reservoirs to attain for them a similar improved overall reservoir characterization.


2020 ◽  
Vol 39 (12) ◽  
pp. 909-917
Author(s):  
Sushmita S. Sengupta ◽  
Jyoti Singh ◽  
Ravi Prakash ◽  
Harilal

Commercial gaseous hydrocarbon has been established from multilayered reservoirs within the Bhuvanagiri Formation in the Ariyalur-Pondicherry subbasin, but sustained production is obtained from only a few wells of the Bhuvanagiri Field. This has necessitated developing an integrated depositional model dovetailing distribution of favorable reservoir areas of the Bhuvanagiri Formation within the subbasin. Root-mean-square amplitude attributes and spectral decomposition attributes, along with RGB blending of spectral slices at different frequencies, have revealed a conspicuously northeast-southwest-trending channel within the Bhuvanagiri Formation. From well, sedimentological, and biostratigraphic data analysis, a deepwater turbidity channel model for the Bhuvanagiri Formation has been postulated. Deciphering the facies distribution pattern vertically and laterally within the turbidity channel is often complex and challenging. Integrated analysis of available laboratory data, petrographic, and scanning electron microscopy studies indicate poor porosity and permeability because of clay coating on grains, occurrence of authigenic clay as pore fill, cementation, and other diagenetic changes that have made reservoir characterization increasingly challenging. Four major lithofacies assemblages have been identified: basal lags, slumps and debris flows, arenaceous coarse-grained stacked channels, and fine-grained channel levee with characteristic log and seismic responses. To characterize the lithofacies, various crossplots have been generated by using processed logs to derive interrelationships between reservoir facies and log impedance. A model-based inversion has been attempted, which resulted in fairly satisfactory output with likely discrimination of reservoir and nonreservoir in an unexplored area within the field. The outcome would facilitate further exploration and delineation activities within the Bhuvanagiri Formation in the Ariyalur-Pondicherry subbasin.


Sign in / Sign up

Export Citation Format

Share Document