scholarly journals Biogas production from organic waste and biomass - fundamentals and current situation

2012 ◽  
Vol 3 (1) ◽  
pp. 43-49
Author(s):  
Christina Dornack

The use of renewable waste for bioenergy production is in discussion because of the concurrence to the food or animal feed. The treatment of organic waste is necessary in order to keep clean the environment. The combination of those proposals, the waste utilization and the production of renewable energy can be combined with several techniques. In Vietnam the energy demand will increase rapidly in the next years, because a lot of people do not have access to electricity. The development of power sources is limited mainly to large central power plants using hydropower and traditional fossil fuels. So in the country there exists a considerable potential for sustainable energy sources like biomass and residues. The biogas potential is large due to the high livestock population. There are more than 30 million animals in farms, mostly pigs, cattle, and water buffalo. There is a high potential for biogas utilization. Biogas production is economic in small and in big plants, so household biogas digesters are one opportunity for production of renewable energy in small villages or cities with a high livestock population. The advantage of anaerobic treatment of organic waste is the work in closed loops. The treatment of organic waste and the utilization of digested sludge from wastewater treatment plants are samples for the circulation of materials after use. The remaining materials can be used in the natural circulation process, because the nutrients such as nitrogen, phosphorous and carbon, and also trace elements remain in the digested matter. In biogas plants a huge variety of substrates can be used. The adaption of biogas technology to the special conditions of the substrates, the increase of the prices for energy, the aim to replace fossil energies with renewable energies will be forced in the next years. Việc sử dụng chất thải có thể tái tạo được để sản xuất năng lượng sinh học là vấn đề còn đang được thảo luận vì sự cạnh tranh với thức ăn hoặc thức ăn cho động vật. Việc xử lý các chất thải hữu cơ là cần thiết để giữ sạch môi trường. Sự kết hợp của các đề xuất đó, tận dụng các chất thải và sản xuất năng lượng tái tạo có thể có thể được kết hợp với một số kỹ thuật.Ở Việt Nam, nhu cầu năng lượng sẽ tăng lên nhanh chóng trong những năm tiếp theo, bởi vì rất nhiều người vẫn chưa có điện sử dụng. Sự phát triển của các nguồn năng lượng chỉ giới hạn chủ yếu là các nhà máy điện lớn trung tâm sử dụng thủy điện và các nhiên liệu hóa thạch truyền thống. Vì vậy, trong nước tồn tại tiềm năng đáng kể cho các nguồn năng lượng bền vững như sinh khối và những nguồn khác. Tiềmnăng khí sinh học lớn do quần thể động vật nuôi rất lớn. Có hơn 30 triệu động vật trong trang trại, chủ yếu là lợn, bò, trâu nước. Tiềm năng sử dụng khí sinh học rất cao. Sản xuất khí sinh học rất có hiệu quả kinh tế trong các nhà máy nhỏ và lớn, do đó, các thiết bị phản ứng tạo khí sinh học ở các hộ gia đình là một cơ hội để sản xuất năng lượng tái tạo trong các thành phố hay làng mạc nhỏ với số lượng lớn các gia súc được chăn nuôi. Ưu điểm của việc xử lý kỵ khí các chất thải hữu cơ là làm việc trong vòngkhép kín. Việc xử lý các chất thải hữu cơ và sử dụng bùn phân hủy từ các nhà máy xử lý nước thải là các ví dụ cho việc tuần hoàn các vật chất sau khi sử dụng. Các vật chất còn lại có thể được sử dụng trong quá trình tuần hoàn tự nhiên, vì các chất dinh dưỡng như phốt pho, nitơ và carbon, và cả các nguyên tố vi lượng vẫn tồn tại trong nguyên liệu đã phân hủy. Trong các nhà máy khí sinh học, rất nhiều loại chất nền có thể được sử dụng. Sự cải tiến công nghệ sản xuất khí sinh học theo các điều kiện đặc biệt của các chất nền, sự gia tăng của giá năng lượng, mục đích thay thế nguồn năng lượng hóa thạch bằng năng lượng tái tạo sẽ là bắt buộc trong những năm tới.

Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2021 ◽  
Vol 11 (18) ◽  
pp. 8484
Author(s):  
Seok-Ho Song ◽  
Jin-Young Heo ◽  
Jeong-Ik Lee

A nuclear power plant is one of the power sources that shares a large portion of base-load. However, as the proportion of renewable energy increases, nuclear power plants will be required to generate power more flexibly due to the intermittency of the renewable energy sources. This paper reviews a layout thermally integrating the liquid air energy storage system with a nuclear power plant. To evaluate the performance realistically while optimizing the layout, operating nuclear power plant conditions are used. After revisiting the analysis, the optimized performance of the proposed system is predicted to achieve 59.96% of the round-trip efficiency. However, it is further shown that external environmental conditions could deteriorate the performance. For the design of liquid air energy storage-nuclear power plant integrated systems, both the steam properties of the linked plants and external factors should be considered.


Author(s):  
Jan Fabian Feldhoff ◽  
Carina Hofmann ◽  
Stefan Hübner ◽  
Jan Oliver Kammesheidt ◽  
Martin Kilbane ◽  
...  

It is broadly accepted that current energy systems should become more sustainable in both a global and local context. However, setting common goals and shared objectives and determining the appropriate means by which to get there is the subject of heavy debate. Therefore, the American Society of Mechanical Engineers (ASME) and the German Association of Engineers (VDI) initiated a joint project aimed at providing a young engineers’ perspective to the global energy conversation. The young engineer project teams set a common goal of assembling a completely sustainable energy system for the U.S. and Germany by 2050. This includes not only the electricity market, but the overall energy system. Based on the current global energy paradigm, a completely sustainable energy system seems very ambitious. However, multiple analyses show that this path is possible and would in the medium to long run not only be desirable, but also competitive in the market. This future ‘energy puzzle’ consists of many important pieces, and the overall picture must be shaped by an overarching strategy of sustainability. Besides the many detailed pieces, four main critical issues must be addressed by engineers, politicians and everybody else alike. These challenges are: i) Rational use of energy: This uncomfortable topic is rather unappealing to communicate, but is a key issue to reduce energy demand and to meet the potentials of renewable energy carriers. ii) Balancing of electricity demand and generation: This is a challenge to the electricity markets and infrastructures that are currently designed for base-load, mainly fossil power plants. The overall mix of renewable energy generation, storage technologies, grid infrastructure, and power electronics will decide how efficient and reliable a future energy system will be. iii) Cost efficiency and competitiveness: It is a prerequisite for industrialized countries to stay competitive and to establish RE in the market. Developing economic technologies while at the same time establishing a strong RE market is the secret of success. iv) Acceptance of the system and its consequences: The best energy strategy cannot be realized without broad public acceptance for it. Therefore, the understanding of the energy technologies and an objective discussion must be promoted — without old fashioned emotionalizing of certain risks. The paper will present details on the four mentioned aspects, compare the situations between the U.S. and Germany, and propose solutions for appropriate political frame conditions to achieve a sustainable energy system.


Author(s):  
Atmonobudi Soebagio ◽  
Bambang Widodo

Indonesia is blessed with abundant renewable energy resources. Nevertheless, they have only been used to cover about 5% of the total national energy demand.   To optimize their utilization, the government has to make and implement a policy that will encourage PLN costumers to help increase their on-grid power supply capacity. This policy will provide benefits for islands that are already equipped with PLN power grids. This paper uses Solar Power Plants and household costumers as models to calculate potential on-grid power increase which can be contributed by PLN costumers. A two-way power meter is used to replace the currently used one. This model will be applied to the  conventional grid to demonstrate the compatibility that show how it is applicable even without upgrading the conventional grid to become   smart grid system. The result shows that customers can participate significantly through the flow of their excess energy to grid.


2020 ◽  
Vol 67 (1) ◽  
pp. 3-10
Author(s):  
Evgeniy I. Lopatin

On the territory of the Ryazan region, there are currently five 5 power plants with an installed electric capacity of 3,759 megawatt, including two gas turbine thermal power plants, which partially use an alternative fuel of the first generation (biogas) obtained from recycled organic waste through their processing. Experiments on conversion the gas turbine power plants to alternative fuels are being carried out. (Research purpose) The research purpose is to determine the power balance and reliability indicators of power plants based on renewable energy in the power system of the Ryazan region. (Materials and methods) Authors have investigated two gas turbine thermal power plants in the Ryazan power system in Sasovo and Kasimov. The reliability indicators of the gas turbine station equipment were calculated. (Results and discussion) Due to the commissioning of the second stage of the gas turbine power plant in Sasovo and its transfer to alternative sources, authors predict an increase in the growth of electricity generation. Authors considered the system reliability of the gas turbine station. (Conclusions) Analysis of power and electricity balances of power plants based on renewable energy in the power system of the Ryazan region showed that their share in the total electricity generation does not exceed one percent. It was determined that the probability of failure-free operation of electrical equipment lies in the range from 0.9 to 0.98. It was found that the probability of failure-free operation of the equipment included in the high voltage switchgear (10 kilovolts) lies below the standard and is up to 0.93. It was revealed a high probability of failure-free operation of step-up transformers up to 0.99, switching and protective equipment as part of a low voltage switchgear from 0.93 to 0.98. It was found that the transfer of gas-turbine stations to alternative fuel (biogas) obtained from recycled organic waste, will not cause a decrease in the reliability of power supply, since the estimated probability of failure-free operation of the equipment corresponds to or exceeds the normative value of 0.95, and the recovery time does not exceed 2.82 hours.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kehinde Oladoke Olatunji ◽  
Noor A. Ahmed ◽  
Oyetola Ogunkunle

AbstractPopulation increase and industrialization has resulted in high energy demand and consumptions, and presently, fossil fuels are the major source of staple energy, supplying 80% of the entire consumption. This has contributed immensely to the greenhouse gas emission and leading to global warming, and as a result of this, there is a tremendous urgency to investigate and improve fresh and renewable energy sources worldwide. One of such renewable energy sources is biogas that is generated by anaerobic fermentation that uses different wastes such as agricultural residues, animal manure, and other organic wastes. During anaerobic digestion, hydrolysis of substrates is regarded as the most crucial stage in the process of biogas generation. However, this process is not always efficient because of the domineering stableness of substrates to enzymatic or bacteria assaults, but substrates’ pretreatment before biogas production will enhance biogas production. The principal objective of pretreatments is to ease the accessibility of the enzymes to the lignin, cellulose, and hemicellulose which leads to degradation of the substrates. Hence, the use of pretreatment for catalysis of lignocellulose substrates is beneficial for the production of cost-efficient and eco-friendly process. In this review, we discussed different pretreatment technologies of hydrolysis and their restrictions. The review has shown that different pretreatments have varying effects on lignin, cellulose, and hemicellulose degradation and biogas yield of different substrate and the choice of pretreatment technique will devolve on the intending final products of the process.


Author(s):  
Anita Zapalowska ◽  
Ulyana Bashutska

In addition to hydroelectric power plants, solar and wind power plants, biogas plants are important in the production of electricity and heat from renewable energy sources. It is known that depending on the type of substrate used for processing and the design features of biogas plants, they have their own advantages and disadvantages. Nevertheless, properly localized biomass installation is able to decrease the use of conventional materials reducing greenhouse gas emissions. Bio-waste, plant residues and other by-products can be used to produce electricity, heat and purified methane as fuel for repaired vehicles. Biogas production is a key technology for the sustainable use of agricultural biomass as a renewable energy source. Both, Poland and Ukraine, have a large agricultural area, and well developed animal cattery, which creates opportunities for alternative energy sources from biomass development.          Agricultural biogas plant energy produced from waste such manure, slurry and another agricultural waste, is an excellent source of heat, likewise, electricity. Therefore the importance of using agricultural waste as an energy source in the production of biogas shall be emphasized. A significant drawback of the system is the need to provide low economic and environmental losses. For this purpose, the place of biomass harvesting, transport and its preparation together with storage should be taken into account. To achieve the highest efficiency, small biogas plants should have permanent composition of substrate consisting of various ingredients.                 Ukraine and Poland has considerable potential of renewable energy sources development of which can provide significant economic, ecological, and social benefits. The production of biogas has become an attractive source of extra income for many farmers. Biogas production has a useful effect not only on economic, but ecological development, particularly in the rural regions. At the same time, environmental protection aspects have gained additional importance, so that anaerobic treatment processes have become a key technology for environmental and climate protection.          On the basis of the submitted documentation by the municipal administration and the manufacturer, the operation of biogas plants for the processing of organic agricultural waste in Gorajec and Odrzechowa (Poland) has been presented.


Author(s):  
Chariya Senpong ◽  
Dawan Wiwattanadate

Potential of renewable energy resources for electricity generation as well as energy supply and demand in Nakhon Si Thammarat province were studied with an objective to develop a sustainable provincial power development plan, and/or to search for renewable energy capacity to replace 2 x 800 MW coalfired power plants have been planned to be installed in the province under PDP2010. The study shows significant potential of renewable energy in the province; especially wind energy, solid waste and biomass. Total capacity of the renewable energy for electricity generation reported in other studies was as high as 3,181.84 MW; however, the installed renewable energy power plants in the province as of 2011 just stand at 42 MW due to various limitations.   Meanwhile, the provincial electricity demand forecast is continued increasing up to 647 MW by the end of 2030. More Renewable energy has been to fulfill energy demand in the province, integration of renewable energy policy, database, and technology innovation are keys success factors for sustainable provincial energy planning. A renewable information center working together with government, business, and the public would be needed to initiate developing the plan with a public organization proposing the provincial committee under public participation and acceptance.   Keywords: Provincial Power Development Plan, renewable energy, coalfired power plant, sustainable energy development, self-reliance energy management, provincial electricity generating.


Author(s):  
ZHIGANG TIAN ◽  
AMIR AHMAD SEIFI

A hybrid energy system integrates renewable energy sources like wind, solar, micro-hydro and biomass, fossil fuel power generators such as diesel generators and energy storage. Hybrid energy system is an excellent option for providing electricity for remote and rural locations where access to grid is not feasible or economical. Reliability and cost-effectiveness are the two most important objectives when designing a hybrid energy system. One challenge is that the existing methods do not consider the time-varying characteristics of the renewable sources and the energy demand over a year, while the distributions of a power source or demand are different over the period, and multiple power sources can often times complement one another. In this paper, a reliability analysis method is developed to address this challenge, where wind and solar are the two renewable energy sources that are considered. The cost evaluation of hybrid energy systems is presented. A numerical example is used to demonstrate the proposed method.


Sign in / Sign up

Export Citation Format

Share Document