scholarly journals Government Policy to Encourage Customers to Support Development of Renewable Energy in Indonesia – A Proposal.

Author(s):  
Atmonobudi Soebagio ◽  
Bambang Widodo

Indonesia is blessed with abundant renewable energy resources. Nevertheless, they have only been used to cover about 5% of the total national energy demand.   To optimize their utilization, the government has to make and implement a policy that will encourage PLN costumers to help increase their on-grid power supply capacity. This policy will provide benefits for islands that are already equipped with PLN power grids. This paper uses Solar Power Plants and household costumers as models to calculate potential on-grid power increase which can be contributed by PLN costumers. A two-way power meter is used to replace the currently used one. This model will be applied to the  conventional grid to demonstrate the compatibility that show how it is applicable even without upgrading the conventional grid to become   smart grid system. The result shows that customers can participate significantly through the flow of their excess energy to grid.

2012 ◽  
Vol 1 (4) ◽  
pp. 56-69
Author(s):  
Farzin Shama ◽  
Gholam Hossein Roshani ◽  
Sobhan Roshani ◽  
Arash Ahmadi ◽  
Saber Karami

Producing non-polluting renewable energy in large scale is essential for sustainability of future developments in industry and human society. Among renewable energy resources, solar energy takes a special place because of its free accessibility and affordability. However, the optimization of its production and consumption processes poses important concerns, essentially in the affordability issue. This paper investigates several optimization and performance issues regarding solar panel converters using two-axis controlled solar tracer that has been practically implemented in comparison with fixed converter panels. Results shown in tables and graphs demonstrate clearly the advantages and disadvantages of the methods. Based on these results, large scale solar power plants are being suggested to be equipped with similar devices.


2013 ◽  
pp. 335-347
Author(s):  
Farzin Shama ◽  
Gholam Hossein Roshani ◽  
Sobhan Roshani ◽  
Arash Ahmadi ◽  
Saber Karami

Producing non-polluting renewable energy in large scale is essential for sustainability of future developments in industry and human society. Among renewable energy resources, solar energy takes a special place because of its free accessibility and affordability. However, the optimization of its production and consumption processes poses important concerns, essentially in the affordability issue. This paper investigates several optimization and performance issues regarding solar panel converters using two-axis controlled solar tracer that has been practically implemented in comparison with fixed converter panels. Results shown in tables and graphs demonstrate clearly the advantages and disadvantages of the methods. Based on these results, large scale solar power plants are being suggested to be equipped with similar devices.


2021 ◽  
Vol 13 (19) ◽  
pp. 10590
Author(s):  
Zaixun Ling ◽  
Yibo Cui ◽  
Jingwen Zheng ◽  
Yu Guo ◽  
Wanli Cai ◽  
...  

A 100% renewable energy system (RES) satisfies a user’s energy demand using only renewable energy, which is an important energy supply in China given that the government aims to realize carbon neutrality by 2060. The design and operation of 100% RESs in different areas would vary significantly due to the impacts of climates and geographical features. This study aimed to investigate the economic and environmental performance of 100% RESs for residential communities in different areas of China. In total, 30 typical cities were chosen based on the climate characteristics and the availability of renewable energy resources. The genetic algorithm was selected to obtain the optimal design of the 100% RES in each area by taking the minimum total annual cost and the minimum CO2 emissions as optimization objectives. The results showed that 100% RESs were dominated by solar energy and biomass. The investment could be recovered in 8 years if the economic performance was optimized in most areas, but the payback period became longer when the 100% RES was optimized when considering environmental performance. The emissions could be reduced by 86–99% for CO2 and 64–97% for NOx. The results of this study would provide data support for the investment of 100% RESs in rural or suburban areas of China.


Author(s):  
Chariya Senpong ◽  
Dawan Wiwattanadate

Potential of renewable energy resources for electricity generation as well as energy supply and demand in Nakhon Si Thammarat province were studied with an objective to develop a sustainable provincial power development plan, and/or to search for renewable energy capacity to replace 2 x 800 MW coalfired power plants have been planned to be installed in the province under PDP2010. The study shows significant potential of renewable energy in the province; especially wind energy, solid waste and biomass. Total capacity of the renewable energy for electricity generation reported in other studies was as high as 3,181.84 MW; however, the installed renewable energy power plants in the province as of 2011 just stand at 42 MW due to various limitations.   Meanwhile, the provincial electricity demand forecast is continued increasing up to 647 MW by the end of 2030. More Renewable energy has been to fulfill energy demand in the province, integration of renewable energy policy, database, and technology innovation are keys success factors for sustainable provincial energy planning. A renewable information center working together with government, business, and the public would be needed to initiate developing the plan with a public organization proposing the provincial committee under public participation and acceptance.   Keywords: Provincial Power Development Plan, renewable energy, coalfired power plant, sustainable energy development, self-reliance energy management, provincial electricity generating.


2019 ◽  
Vol 11 (7) ◽  
pp. 2136 ◽  
Author(s):  
Ceren Erdin ◽  
Gokhan Ozkaya

In Turkey, current energy generations are not sufficient for the existing energy needs and besides, energy demand is expected to increase by 4–6 percent annually until 2023. Therefore, the government aims to increase the ratio of renewable energy resources (RES) in total installed capacity to 30 percent by 2023. By this date, total energy investments are expected to be approximately $110 billion. Turkey is the fastest growing energy market among the OECD countries. Therefore, Turkey is an attractive market for energy companies and investors. At this stage, site selection and deciding appropriate RES are the most important feasibility parameters for investment. In this study, “Site Selection in Turkey” issue for RES (solar, wind, hydroelectric, geothermal, biomass) is evaluated by the ELECTRE which is one of the Multi Criteria Decision Making (MCDM) methods. In addition, the reasons for choosing this method are explained according to the literature. The study emphasizes the importance of energy generation from renewable and sustainable sources and is concerned with improving the position of the country. The Turkish government offers many purchasing guarantees and high incentives, especially in the renewable energy sector. As a result of the analysis, the most suitable energy sources are presented according to the geography and energy potential of the regions. The study aims to inform energy firms and everyone related with RES about Turkey’s RES opportunities.


2021 ◽  
Vol 13 (10) ◽  
pp. 5462
Author(s):  
Baibhaw Kumar ◽  
Gábor Szepesi ◽  
Zsolt Čonka ◽  
Michal Kolcun ◽  
Zsolt Péter ◽  
...  

This article aims to present some opportunities for improved solar energy utilization by raising the share of renewables in energy generation in the Visegrád Countries (Poland, Czech Republic, Slovakia, and Hungary). The analysis is based on the status of the renewable energy targets in the member countries and their future possibilities. This paper derives input through a thorough investigation of independent data, government policies, European Commission reports, and other data available online with free access. The analysis is processed by focusing on Hungary, as a country with various possible facets of solar energy demand and supply in the region. The assessment methodology is in the context of a geographical map, technical regression analysis, temperature distribution profiles, and the relative trends of solar potential in Hungary. The country currently has ten solar power plants with more than 10 MWp, and five remarkable plants under 10 MWp capacity spread over Hungary. The analysis on geographical aspects clubbed with technical and solar affecting parameters was carried out to harvest the sustainable potential of solar energy in the region. This study attempts to establish a relationship between the current and future prospects of solar energy in Hungary as a nation, and as part of the Visegrád countries, based on assessment for a sustainable future.


2016 ◽  
Vol 36 (1) ◽  
pp. 196-212
Author(s):  
MF Akorede ◽  
O Ibrahim ◽  
SA Amuda ◽  
AO Otuoze ◽  
BJ Olufeagba

Over 80% of the current Nigerian primary energy consumption is met by petroleum. This overdependence on fossil fuels derived from petroleum for local consumption requirements should be a serious source of concern for the country in two ways – depletion of the resources and negative impact on the environment. This paper presents a critical review of the available renewable energy resources in Nigeria, namely; biomass, hydropower, solar and wind energy. It examines the current energy situation in the country and equally discusses the various energy policy documents developed by the government. Using the scenario-based International Atomic Energy Agency models, the projected energy demand and supply structure of the country through 2030 are presented and analysed. Overall, this study shows that Nigeria will overcome her present energy crisis if she explores the abundant renewable energy resources in the country.  The data presented in this paper is a crucial eye-opener for relevant government agencies towards developing these energy resources in tackling the present energy crisis in Nigeria.  http://dx.doi.org/10.4314/njt.v36i1.25


2018 ◽  
Vol 10 (10) ◽  
pp. 3690 ◽  
Author(s):  
Yahya Alharthi ◽  
Mahbube Siddiki ◽  
Ghulam Chaudhry

The economic growth and demographic progression in Saudi Arabia increased spending on the development of conventional power plants to meet the national energy demand. The conventional generation and continued use of fossil fuels as the main source of electricity will raise the operational environmental impact of electricity generation. Therefore, using different renewable energy sources might be a solution to this issue. In this study, a grid-connected solar PV-wind hybrid energy system has been designed considering an average community load demand of 15,000 kWh/day and a peak load of 2395 kW. HOMER software is used to assess the potential of renewable energy resources and perform the technical and economic analyses of the grid-connected hybrid system. The meteorological data was collected from the Renewable Resources Atlas developed by the King Abdullah City of Atomic and Renewable Energy (KACARE). Four different cities in the Kingdom of Saudi Arabia, namely, the cities of Riyadh, Hafar Albatin, Sharurah, and Yanbu were selected to do the analyses. The simulation results show that the proposed system is economically and environmentally feasible at Yanbu city. The system at this city has the lowest net present cost (NPC) and levelized the cost of energy (LCOE), highest total energy that can be sold to the grid, as well as the lowest CO2 emissions due to a highly renewable energy penetration. This grid-connected hybrid system with the proposed configuration is applicable for similar meteorological and environmental conditions in the region, and around the world. Reduction of some greenhouse gasses as well as the reduction of energy costs are main contributors of this research.


2021 ◽  
Vol 25 (1) ◽  
pp. 865-878
Author(s):  
Marika Kacare ◽  
Ieva Pakere ◽  
Armands Grāvelsiņš ◽  
Dagnija Blumberga

Abstract Renewable energy sources are expanding opportunities for industrial development and can boost economic growth and create new jobs. In all European Union (EU) countries, including Latvia, it is possible to use renewable energy resources cost-effectively. The world is now at the beginning of the global energy transformation. Cost-effective renewable energy technologies provided an opportunity for sufficient development to reach ambitious climate targets of the EU Directive 2009/28/EC. Some systems are not only dependent on the interaction of many elements and dynamics over time, but they are also variable in space. In this context, energy production from local and renewable resources is one of the most relevant examples. It is characterized by many spatially variable elements, such as biomass availability, wind speed, solar radiation, location of power plants, transmission network infrastructure, energy demand, etc. It is crucial to explore the spatial distribution of resources to plan territorially-unified development of renewable energy and, consequently, promote efficient use of resources. This paper describes the data acquisition process of the spatial distribution of renewable energy sources. ArcGIS PRO and data collected from the various databases were used to describe the energy sectors according to resources, spheres of consumption and regions.


2021 ◽  
Vol 13 (7) ◽  
pp. 3933
Author(s):  
Solomon E. Uhunamure ◽  
Karabo Shale

South Africa is been faced with erratic power supply, resulting in persistent load shedding due to ageing in most of its coal-fired power plants. Associated with generating electricity from fossil fuel are environmental consequences such as greenhouse emissions and climate change. On the other hand, the country is endowed with abundant renewable energy resources that can potentially ameliorate its energy needs. This article explores the viability of renewable energy using the strengths, weaknesses, opportunities and threats (SWOT) analysis approach on the key renewable potential in the country. The result indicates that geographic position, political and economic stability and policy implementation are some of the strengths. However, Government bureaucratic processes, level of awareness and high investment cost are some of the weaknesses. Several opportunities favour switching to renewable energy, and these include regional integration, global awareness on climate change and the continuous electricity demand. Some threats hindering the renewable energy sector in the country include land ownership, corruption and erratic climatic conditions. Some policy implications are suggested based on the findings of the study.


Sign in / Sign up

Export Citation Format

Share Document