scholarly journals Remediation of Contaminated Water With Crystal Violet Dye by Using Magnetite Nanoparticles: Synthesis, Characterization and Adsorption Mechanism Studies

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
NI Abdo
2021 ◽  
Vol 34 (1) ◽  
pp. 104-110
Author(s):  
Sonia Rani ◽  
Sudesh Chaudhary

The chickpea husk (Cicer arientum) were activated by chemical modification with sulphuric acid, for its application as biosorbent for the remediation of crystal violet dye from wastewater. Activated chickpea husk (ACH) was characterized for its chemical structure and morphology using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The after effects of leading affecting parameters like dose of adsorbent, time of contact, pH and concentration were studied by commencing experiments in batch mode. Adsorption mechanism and sorption efficiency of ACH was examined using variety of isotherms (Langmuir & Freundlich) and kinetic models (pseudo first order and pseudo second order). Experimental data for adsorption rate was in good harmony with the results obtained using pseudo second order model. The adsorption capacity determined using Langmuir isotherm and pseudo second order model was found to be 142.85 mg/g.


2010 ◽  
Vol 7 (3) ◽  
pp. 975-984 ◽  
Author(s):  
Himanshu Patel ◽  
R. T. Vashi

The present investigation describes adsorption of crystal violet dye from its aqueous solution onto tamarind (Tamarindus indica) fruit shell powder. Initial concentration, agitation speed and pH with various temperature have been studied, in which pH was found to be most effective. The adsorption data were mathematically analyzed using adsorption isotherm like Freundlich and Langmuir isotherm to study adsorption mechanism of crystal violet onto this seed powder. Freundlich isotherm was found to be most applicable. The equilibrium data were applied to intra-particle diffusion and adsorption kinetics. The reaction was found to be pseudo second order.


2021 ◽  
pp. 116878
Author(s):  
Ganesh Jethave ◽  
Sanjay Attarde ◽  
Umesh Fegade ◽  
Inamuddin ◽  
Tariq A. Altalhi ◽  
...  

2019 ◽  
Author(s):  
Jingjing Yan ◽  
Rick Homan ◽  
Corrianna Boucher ◽  
Prem N. Basa ◽  
Katherine Fossum ◽  
...  

Recently, we demonstrated that triphenylacetic acid could be used to seal dye molecules within MOF-5, but guest release required digestion of the framework by treatment with acid. We prepared the sterically bulky photocapping group [bis-(3-nitro-benzyl)-amino]-(3-nitro-phenyl)-acetic acid (PC1) can prevent Crystal violet dye diffusion from inside MOF-5 until removed by photolysis.


2019 ◽  
Author(s):  
Jingjing Yan ◽  
Rick Homan ◽  
Corrianna Boucher ◽  
Prem N. Basa ◽  
Katherine Fossum ◽  
...  

Recently, we demonstrated that triphenylacetic acid could be used to seal dye molecules within MOF-5, but guest release required digestion of the framework by treatment with acid. We prepared the sterically bulky photocapping group [bis-(3-nitro-benzyl)-amino]-(3-nitro-phenyl)-acetic acid (PC1) can prevent Crystal violet dye diffusion from inside MOF-5 until removed by photolysis.


Author(s):  
Raja Selvaraj ◽  
Shraddha Pai ◽  
Gokulakrishnan Murugesan ◽  
Sadanand Pandey ◽  
Ruchi Bhole ◽  
...  

AbstractThe reach of nanotechnology has permeated into a range of disciplines and systematically revolutionized many manufacturing techniques. Today, nanoparticles are fabricated using varied approaches, each with its pros and cons. Of them, the green synthesis approach has been very effective in terms of overall economics and the stability of nanoparticles. The current study investigates the use of the leaf extract of Bridelia retusa for the synthesis of iron oxide nanoparticles. Typical of these nanoparticles, no specific peak was discernible on employing UV–visible spectroscopy. The size, morphological features, and crystallinity of the nanoparticles were determined by employing scanning electron microscopy and electron diffraction spectroscopy. Almost uniformly sized at 38.58 nm, the nanoparticles were spherical, constituting elemental iron at 11.5% and elemental oxygen at 59%. Their relative composition confirmed the nanoparticles to be iron oxide. X-ray diffraction studies showed the particles to be hexagonal and rhombohedral, estimating the crystallite size at 24.27 nm. BET analysis put the pore volume at 0.1198 cm3/g and pore diameter at 7.92 nm. The unique feature of the nanoparticles was that the specific surface area was 75.19 m2/g, which is more than 12 times higher than commercial α-Fe2O3. The participation of a variety of biochemicals in the leaf extract towards the reduction-cum-stabilization was confirmed using FTIR analysis. The Fenton-like catalytic activity of the nanoparticles was put to test by attempting to degrade crystal violet dye, which was completely achieved in 270 min. The kinetics of the degradation was also modelled in the study.


Sign in / Sign up

Export Citation Format

Share Document