Electroanalytical applications of nanocomposites from conducting polymers and metallic nanoparticles prepared by layer-by-layer deposition

2010 ◽  
Vol 83 (2) ◽  
pp. 345-358 ◽  
Author(s):  
Vessela Tsakova ◽  
Svetlozar Ivanov ◽  
Ulrich Lange ◽  
Aneliya Stoyanova ◽  
Vladimir Lyutov ◽  
...  

Layer-by-layer (LbL) deposition is a convenient technique for the formation of ultra-thin nanocomposite layers containing metallic nanoparticles (NPs) and conducting polymers (CPs). The advantages of this approach for producing composite layers suitable for electroanalytical applications are discussed. Examples of electroanalytical applications of LbL-deposited composites are presented. Composite layers consisting of polyaniline (PANI) and Pd NPs are used for hydrazine oxidation. The PANI–Au NPs system is applied for dopamine (DA) and uric acid (UA) oxidation.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Aitor Urrutia ◽  
Kartheka Bojan ◽  
Leonel Marques ◽  
Kevin Mullaney ◽  
Javier Goicoechea ◽  
...  

Novel protein sensors based on tapered optical fibres modified with Au coatings deposited using two different procedures are proposed. Au-based coatings are deposited onto a nonadiabatic tapered optical fibre using (i) a novel facile method composed of layer-by-layer deposition consisting of polycation (poly(allylamine hydrochloride), PAH) and negatively charged SiO2nanoparticles (NPs) followed by the deposition of the charged Au NPs and (ii) the sputtering technique. The Au NPs and Au thin film surfaces are then modified with biotin in order to bind streptavidin (SV) molecules and detect them. The sensing principle is based on the sensitivity of the transmission spectrum of the device to changes in the refractive index of the coatings induced by the SV binding to the biotin. Both sensors showed high sensitivity to SV, with the lowest measured concentration levels below 2.5 nM. The calculated binding constant for the biotin-SV pair was2.2×10-11 M−1when a tapered fibre modified with the LbL method was used, with a limit of detection (LoD) of 271 pM. The sensor formed using sputtering had a binding constant of1.01×10-10 M−1with a LoD of 806 pM. These new structures and their simple fabrication technique could be used to develop other biosensors.


2016 ◽  
Vol 9 (9) ◽  
pp. 2806-2811 ◽  
Author(s):  
Hye Jeong Lee ◽  
Gopinathan Anoop ◽  
Hyeon Jun Lee ◽  
Chingu Kim ◽  
Ji-Woong Park ◽  
...  

A layer-by-layer deposition of two conducting polymers, each layer of which is a few tenths of nanometer thick, has been successfully performed to enhance the thermoelectric power factor of organic thin films.


2021 ◽  
Author(s):  
Kristina Ashurbekova ◽  
Karina Ashurbekova ◽  
Iva Saric ◽  
Evgeny Modin ◽  
Mladen Petravic ◽  
...  

We developed a thin film growth with a radical-initiated cross-linking of vinyl groups in a layer-by-layer manner via molecular layer deposition (MLD). The cross-linked film exhibited improved properties like 12% higher density and enhanced stability compared to the non-cross-linked film.


2020 ◽  
Vol 56 (91) ◽  
pp. 14283-14286
Author(s):  
Diana Al Husseini ◽  
Junchao Zhou ◽  
Daniel Willhelm ◽  
Trevor Hastings ◽  
Gregory S. Day ◽  
...  

Functionalization of optical waveguides with submicron all-nanoparticle coatings significantly enhanced the detection of acetone. Such coatings were enabled via precise control of the substrate withdrawal speed using the layer-by-layer deposition.


Langmuir ◽  
2009 ◽  
Vol 25 (2) ◽  
pp. 1224-1232 ◽  
Author(s):  
Marta Kolasinska ◽  
Rumen Krastev ◽  
Thomas Gutberlet ◽  
Piotr Warszynski

Langmuir ◽  
2008 ◽  
Vol 24 (19) ◽  
pp. 10851-10857 ◽  
Author(s):  
Lianbin Zhang ◽  
Yang Li ◽  
Junqi Sun ◽  
Jiacong Shen

Sign in / Sign up

Export Citation Format

Share Document