Tumor-targeting drug delivery of chemotherapeutic agents

2011 ◽  
Vol 83 (9) ◽  
pp. 1685-1698 ◽  
Author(s):  
Iwao Ojima

Despite the significant progress in the development of cancer detection, prevention, surgery, and therapy, there is still no common cure for this disease. In addition, the long-standing problem of chemotherapy is the lack of tumor-specific treatments. Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing undesirable severe side effects. Therefore, various “molecularly targeted cancer therapies” have been developed for use in specific cancers, including tumor-targeting drug delivery systems (TTDDS). In general, a TTDDS consists of a tumor recognition moiety and a cytotoxic “warhead” connected through a “smart” linker to form a conjugate. When a multi-functionalized nanomaterial is used as the vehicle, a “Trojan horse” approach becomes possible for mass delivery of cytotoxic warheads to maximize the efficacy. This account presents the progress in the molecular approaches to the design and development of novel drug delivery systems for tumor-targeting chemotherapy in our laboratory.

2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


2011 ◽  
Vol 1 (1) ◽  
pp. 67-84
Author(s):  
Zhigang Hu ◽  
Fei Huo ◽  
Yi Zhang ◽  
Chunyang Chen ◽  
Kehua Tu ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 725
Author(s):  
Yuseon Shin ◽  
Patihul Husni ◽  
Kioh Kang ◽  
Dayoon Lee ◽  
Sehwa Lee ◽  
...  

The combination of nanotechnology and chemotherapy has resulted in more effective drug design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting. Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves the efficacy and safety of treatment through spatiotemporal manipulation of light. Additionally, pH-induced delivery is one of the most widely studied strategies for targeting the acidic micro-environment of solid tumors. Accordingly, in this review, we discuss representative strategies for designing DDSs using light as an exogenous signal or pH as an endogenous trigger.


2015 ◽  
Vol 3 (32) ◽  
pp. 6599-6604 ◽  
Author(s):  
M. T. Cook ◽  
S. A. Schmidt ◽  
E. Lee ◽  
W. Samprasit ◽  
P. Opanasopit ◽  
...  

Thiol-bearing microgels have been synthesised from copolymerisation of 2-(acetylthio)ethylacrylate and 2-hydroxyethylmethacrylate, and subsequent deprotection using sodium thiomethoxide.


2011 ◽  
Vol 1 (1) ◽  
pp. 67-84
Author(s):  
Zhigang Hu ◽  
Fei Huo ◽  
Yi Zhang ◽  
Chunyang Chen ◽  
Kehua Tu ◽  
...  

2021 ◽  
Author(s):  
Yubin Huang ◽  
Hongtong Lu ◽  
Shasha He ◽  
Qingfei Zhang ◽  
Xiaoyuan Li ◽  
...  

The clinical application of conventional chemotherapeutic agents, represented by cisplatin, is limited by severe side effects. So, it is essential to explore more safer and controlled drug delivery systems for...


2021 ◽  
Vol 22 ◽  
Author(s):  
Rui Wang ◽  
Xianyi Sha

: The emergence of nanoscale drug delivery systems provides new opportunities for targeting delivery of chemotherapeutic drugs and has achieved excellent results. In recent years, with the arising of the concept of intelligent drug delivery systems, the design and preparation of carriers have become more and more complicated, which is not conducive to clinical transformation. Researchers are gradually focusing on biomimetic nanoscale drug delivery systems, trying to combine the physicochemical properties of nanoscale carriers with the natural biological functions of endogenous substances, so as to boost tumor targeting delivery. In this article, we first classify and introduce biomimetic nanoscale drug delivery systems, and then emphasize their unique biological functions. The biomimetic nanoscale drug delivery systems have the advantages of simple preparation, powerful functions, and low immunogenicity, having a good application prospect.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 288 ◽  
Author(s):  
Mohamed Haider ◽  
Shifaa M. Abdin ◽  
Leena Kamal ◽  
Gorka Orive

The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.


Vesicular drug delivery system has various advantages thereby improving therapeutic efficacy and by sustaining and controlling action of drugs. Liposomes, sphingosomes, ethosomes, cubosomes, pharmacasomes, niosomes, transferosomes are the newly developed vesicular drug delivery system. This review article mainly deals with the sphingosomal drug delivery system. Sphingosomes are vesicular drug delivery systems in which an aqueous volume is enclosed with sphingolipid bilayer membranes. Sphingosomes has an enhanced area of interest because of their applicability in improving the in vivo delivery of various chemotherapeutic agents, biological macromolecules and diagnostics. Sphingosome has major advantages over other vesicular drug delivery systems like high stability, more in vivo circulation time, high tumor loading efficacy in case of cancer therapy as compared to liposomes, niosomes etc. Sphingosomes are clinically used vesicular delivery system for chemotherapeutic agent, biological macromolecule and diagnostics. This review concluded that sphingosome represents a promising vesicular drug delivery system for a range of possible therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document