targeted cancer therapies
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 66)

H-INDEX

29
(FIVE YEARS 7)

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1820
Author(s):  
Rodney E. Shackelford ◽  
Yan Li ◽  
Ghali E. Ghali ◽  
Christopher G. Kevil

Hydrogen sulfide (H2S) is a gasotransmitter that exerts numerous physiologic and pathophysiologic effects. Recently, a role for H2S in DNA repair has been identified, where H2S modulates cell cycle checkpoint responses, the DNA damage response (DDR), and mitochondrial and nuclear genomic stability. In addition, several DNA repair proteins modulate cellular H2S concentrations and cellular sulfur metabolism and, in turn, are regulated by cellular H2S concentrations. Many DDR proteins are now pharmacologically inhibited in targeted cancer therapies. As H2S and the enzymes that synthesize it are increased in many human malignancies, it is likely that H2S synthesis inhibition by these therapies is an underappreciated aspect of these cancer treatments. Moreover, both H2S and DDR protein activities in cancer and cardiovascular diseases are becoming increasingly apparent, implicating a DDR–H2S signaling axis in these pathophysiologic processes. Taken together, H2S and DNA repair likely play a central and presently poorly understood role in both normal cellular function and a wide array of human pathophysiologic processes. Here, we review the role of H2S in DNA repair.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Eloïse Claude ◽  
Guillaume de Lhoneux ◽  
Christophe E. Pierreux ◽  
Etienne Marbaix ◽  
Maëlle de Ville de Goyet ◽  
...  

AbstractThe vast majority of adult cancer cells achieve cellular immortality by activating a telomere maintenance mechanism (TMM). While this is mostly achieved by the de-silencing of hTERT telomerase gene expression, an alternative homologous recombination-based and telomerase-independent mechanism, known as ALT (Alternative Lengthening of Telomeres), is frequently activated in a subset of tumors, including paediatric cancers. Being absent from normal cells, the ALT mechanism offers interesting perspectives for new targeted cancer therapies. To date, however, the development of better translationally applicable tools for ALT detection in tumor sections is still needed. Here, using a newly derived ALT-positive cancer cell mouse xenograft model, we extensively examined how the previously known ALT markers could be used as reliable tools for ALT diagnosis in tumor sections. We found that, together with the detection of ultra-bright telomeric signals (UBS), an ALT hallmark, native telomeric FISH, that detects single-stranded C-rich telomeric DNA, provides a very sensitive and robust tool for ALT diagnosis in tissues. We applied these assays to paediatric tumor samples and readily identified three ALT-positive tumors for which the TMM was confirmed by the gold-standard C-circle amplification assay. Although the latter offers a robust assay for ALT detection in the context of research laboratories, it is more difficult to set up in histopathological laboratories and could therefore be conveniently replaced by the combination of UBS detection and native telomeric FISH.


Children ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 829
Author(s):  
Claire Fraley ◽  
Sarah A. Milgrom ◽  
Lavanya Kondapalli ◽  
Matthew R. G. Taylor ◽  
Luisa Mestroni ◽  
...  

Cardiotoxicity is a well-recognized late effect among childhood cancer survivors. With various pediatric cancers becoming increasingly curable, it is imperative to understand the disease burdens that survivors may face in the future. In order to prevent or mitigate cardiovascular complications, we must first understand the mechanistic underpinnings. This review will examine the underlying mechanisms of cardiotoxicity that arise from traditional antineoplastic chemotherapies, radiation therapy, hematopoietic stem cell transplantation, as well as newer cellular therapies and targeted cancer therapies. We will then propose areas for prevention, primarily drawing from the anthracycline-induced cardiotoxicity literature. Finally, we will explore the role of human induced pluripotent stem cell cardiomyocytes and genetics in advancing the field of cardio-oncology.


2021 ◽  
Author(s):  
Bing Wei ◽  
Chengzhi Zhao ◽  
Ke Yang ◽  
Chi Yan ◽  
Yuxi Chang ◽  
...  

Abstract Background: The evaluation of the clinical efficacy of molecularly targeted cancer therapies remains a great challenge.Methods: Next-generation sequencing (NGS) analysis and fluorescence in situ hybridization (FISH) were used to evaluate the clinical efficacy in terms of EGFR mutation abundance and aneuploidy status. Results: The PFS of patients diagnosed as euploidy was actually higher than that of patients diagnosed with aneuploidy, and was related to both ORR and DCR. Patients with EGFR mutation abundance ≥ 28.86% had slightly higher ORR and similar DCR. Two-way analysis of variance was used to assess the effects of EGFR mutation abundance and tumor aneuploidy status on patients’ PFS, supporting a strong correlation between aneuploidy status and clinical efficacy, euploid patients have higher ORR and DCR.Conclusions: Aneuploidy status could effectively evaluate clinical efficacy of patients with lung cancer, whereas EGFR mutations abundance couldn’t predict the extent of benefit from EGFR-TKI treatment.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mikyung Kelly Seo ◽  
John Cairns

Abstract Background Despite the increasing economic assessment of biomarker-guided therapies, no clear agreement exists whether existing methods are sufficient or whether different methods might produce different cost-effectiveness results. This study aims to examine current practices of modeling companion biomarkers when assessing the cost-effectiveness of targeted cancer therapies. It investigates the current methods in modeling the characteristics of companion diagnostics based on existing economic evaluations of biomarker-guided therapies in cancer. Methods A literature search was performed using Medline, Embase, EconLit, Cochrane library for economic evaluations of biomarker-guided therapies with companion diagnostics in cancer. Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Studies were selected using pre-specified eligibility criteria based on the PICO framework. To make the included studies more comparable, we qualitatively synthesized the data under nine domains of methods where consensus was deemed lacking. Results Only four of the twenty-two studies included in this review were found to be of good quality with respect to incorporating the characteristics of companion biomarkers in economic evaluations. However, many evaluations focused on a pre-selected patient group rather than including all patients regardless of their biomarker status. Companion biomarker characteristics captured in evaluations were often limited to the cost or the accuracy of the test. Often, only the costs of biomarker testing were modelled. Clinical outcomes and health state utilities were often not included due to the limited data generated by clinical trials. Methods of economic evaluation were not applied consistently in assessments of companion cancer biomarkers for targeted therapies. It was also shown that conflicting cost-effectiveness results were likely depending on what comparator arm was chosen and what comparison structure was designed in the model. Conclusion We found no consistent approach applied in assessing the value of companion biomarker tests and including the characteristics of biomarkers in an economic evaluation of targeted oncology therapies. Currently, many economic evaluations fail to capture the full value of companion biomarkers beyond sensitivity/specificity and cost related to biomarker testing.


Author(s):  
Yan Gao ◽  
Haibei Tong ◽  
Jialiang Li ◽  
Jiachen Li ◽  
Di Huang ◽  
...  

Nanomedicines have been designed and developed to deliver anticancer drugs or exert anticancer therapy more selectively to tumor sites. Recent investigations have gone beyond delivering drugs to tumor tissues or cells, but to intracellular compartments for amplifying therapy efficacy. Mitochondria are attractive targets for cancer treatment due to their important functions for cells and close relationships to tumor occurrence and metastasis. Accordingly, multifunctional nanoplatforms have been constructed for cancer therapy with the modification of a variety of mitochondriotropic ligands, to trigger the mitochondria-mediated apoptosis of tumor cells. On this basis, various cancer therapeutic modalities based on mitochondria-targeted nanomedicines are developed by strategies of damaging mitochondria DNA (mtDNA), increasing reactive oxygen species (ROS), disturbing respiratory chain and redox balance. Herein, in this review, we highlight mitochondria-targeted cancer therapies enabled by nanoplatforms including chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT) and combined immunotherapy, and discussed the ongoing challenges.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Pouya Safarzadeh Kozani ◽  
Pooria Safarzadeh Kozani ◽  
Fatemeh Rahbarizadeh

: Targeted cancer therapy is developing rapidly according to the fact that it has been demonstrated that this type of therapy can reduce various side effects and adverse events of the commonly available cancer treatment approaches such as chemotherapy and radiotherapy. This selective type of cancer therapy can mediate encouraging outcomes where the frontline cancer treatment methods have failed to do so. Aptamer-assisted delivery of various types of cargoes or the utilization of aptamer for the redirection of delivery vehicles is among various fields of targeted cancer therapy that have gained significant attention lately. Aptamers are single-stranded oligonucleotides or peptide molecules that harbor significant levels of specificity and affinity toward various types of targets such as cell surface antigens, ions, toxins, chemicals, etc. They have shown encouraging results in several types of targeted cancer therapy for the redirection of a variety of cargoes. In this review, we shed the light on the application of aptamers for the delivery of nucleotides such as MicroRNAs (miRNAs), short or small interfering RNAs (siRNAs), and short hairpin RNA or small hairpin RNAs (shRNAs) that harbor tumor suppression properties in various kinds of malignancies.


2021 ◽  
Vol 128 (12) ◽  
pp. 1973-1987
Author(s):  
Matthew R. Fleming ◽  
Ling Xiao ◽  
Klarissa D. Jackson ◽  
Joshua A. Beckman ◽  
Ana Barac ◽  
...  

Novel targeted cancer therapies have revolutionized oncology therapies, but these treatments can have cardiovascular complications, which include heterogeneous cardiac, metabolic, and vascular sequelae. Vascular side effects have emerged as important considerations in both cancer patients undergoing active treatment and cancer survivors. Here, we provide an overview of vascular effects of cancer therapies, focusing on small-molecule kinase inhibitors and specifically inhibitors of BTK (Bruton tyrosine kinase), which have revolutionized treatment and prognosis for B-cell malignancies. Cardiovascular side effects of BTK inhibitors include atrial fibrillation, increased risk of bleeding, and hypertension, with the former 2 especially providing a treatment challenge for the clinician. Cardiovascular complications of small-molecule kinase inhibitors can occur through either on-target (targeting intended target kinase) or off-target kinase inhibition. We will review these concepts and focus on the case of BTK inhibitors, highlight the emerging data suggesting an off-target effect that may provide insights into development of arrhythmias, specifically atrial fibrillation. We believe that cardiac and vascular sequelae of novel targeted cancer therapies can provide insights into human cardiovascular biology.


Sign in / Sign up

Export Citation Format

Share Document