Photodegradable cross-linked polymer derived from a vinylic rotaxane cross-linker possessing aromatic disulfide axle

2013 ◽  
Vol 85 (4) ◽  
pp. 835-842 ◽  
Author(s):  
Yasuhito Koyama ◽  
Takahiro Yoshii ◽  
Yasuhiro Kohsaka ◽  
Toshikazu Takata

A new concept for photodegradable cross-linked polymers utilizing characteristics of rotaxane cross-links and aromatic disulfides is proposed. The cross-linked polymer is obtained by the radical polymerization of a vinyl monomer in the presence of a [3]rotaxane-type cross-linker having two radically polymerizable groups. The [3]rotaxane-type cross-linker was prepared in 93 % yield by the typical rotaxane-forming reaction using a dumbbell-shaped aromatic disulfide possessing a bis(ammonium salt) moiety and a crown ether wheel tethered by a hydroxymethyl group (96 %) and the subsequent vinyl group-endowment (80 %). The radical polymerization of methyl methacrylate (MMA) in the presence of the cross-linker (0.1 mol %) at 60 °C afforded solvent-insoluble polymer in 90 % yield. When the polymer was swollen to a gel in dimethylformamide (DMF) and a small part of the gel was UV-irradiated, the gel was promptly solubilized, probably via the photochemical scission of the S–S linkage of the interlocked aromatic disulfide, causing the efficient decomposition of the rotaxane cross-links. The recovered poly(methyl methacrylate) bearing a small amount of crown ether moiety has a molecular weight of Mn 170 kg/mol (Mw/Mn 2.1) that indicated the occurrence of the site-selective photodegradation.

1982 ◽  
Vol 94 (1) ◽  
pp. 129-142 ◽  
Author(s):  
N Hirokawa

The elaborate cross-connections among membranous organelles (MO), microtubules (MT), and neurofilaments (NF) were demonstrated in unifixed axons by the quick-freeze, deep-etch, and rotary-shadowing method. They were categorized into three groups: NF-associated cross-linker, MT-associated cross-bridges, and long cross-links in the subaxolemmal space. Other methods were also employed to make sure that the observed cross-connections in the unfixed axons were not a result of artifactual condensation or precipitation of soluble components or salt during deep-etching. Axolemma were permeablized either chemically (0.1% saponin) or physically (gentle homogenization), to allow egress of their soluble components from the axon; or else the axons were washed with distilled water after fixation. After physical rupture of the axolemma or saponin treatment, most of the MO remained intact. MT were stabilized by adding taxol in the incubation medium. Axons prepared by these methods contained many longitudinally oriented NF connected to each other by numerous fine cross-linkers (4-6 nm in diameter, 20-50 nm in length). Two specialized regions were apparent within the axons: one composed of fascicles of MT linked with each other by fine cross-bridges; the other was in the subaxolemmal space and consisted of actinlike filaments and a network of long cross-links (50-150 nm) which connected axolemma and actinlike filaments with NF and MT. F-actin was localized to the subaxolemmal space by the nitrobenzooxadiazol phallacidin method. MO were located mainly in these two specialized regions and were intimately associated with MT via fine short (10-20 nm in length) cross-bridges. Cross-links from NF to MO and MT were also common. All these cross-connections were observed after chemical extraction or physical rupture of the axon; however, these procedures removed granular materials which were attached to the filaments in the fresh unextracted axons. The cross-connections were also found in the axons washed with distilled water after fixation. I conclude that the cross- connections are real structures while the granular material is composed of soluble material, probably protein in nature.


2017 ◽  
Vol 8 (12) ◽  
pp. 1878-1881 ◽  
Author(s):  
J. Sawada ◽  
D. Aoki ◽  
M. Kuzume ◽  
K. Nakazono ◽  
H. Otsuka ◽  
...  

A [2]rotaxane cross-linker with one vinyl group in each component was synthesized as a vinylic cross-linker for highly toughened network polymers.


2012 ◽  
Vol 67 (11) ◽  
pp. 1132-1136
Author(s):  
Angelika Jahnke ◽  
Herbert Meier

Radical polymerization of methyl methacrylate (2) as major component and the methacrylates 1a or 1b, which contain an (E)-stilbene unit fixed by a tether to the ester group, yield easily soluble copolymers 3a, b. Whereas the dominant photoreactions in solution are (E)⇄Z) isomerizations and intra-chain [2π +2π] cycloadditions, cast films of 3a, b give an inter-chain photo-crosslinking on irradiation. Compared to homopolymers, the copolymers are not only better soluble and more easily processible, their films show less undesired light scattering. The cross-linked material is completely insoluble in organic solvents. Thus, it represents the basis for negative photoresists and the corresponding imaging techniques.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Motohiro Tagaya ◽  
Masaru Nakagawa

Cross-linking degree of a poly(dimethylsiloxane) (PDMS) film was controlled, and the incorporation of hydrophobic decanethiol-passivated gold (Au) nanoparticles into the film was investigated. FT-IR spectra indicated that the hydrosilylation reaction between a vinyl group and a hydrosilyl group occurred with the cross-linking. The swelling degree of the film in toluene changed with a cross-linker concentration, indicating the control of the cross-linking degree of PDMS film. By EDX analysis, the amount of incorporated Au nanoparticles increased with decreasing a cross-linker concentration, indicating the enlarged free volume of the film. The Au nanoparticle-PDMS composite film containing a cross-linker at 6 wt% showed brown color attributed to plasmon resonance of Au nanoparticles, suggesting the Au nanoparticles in the film at monodispersion state. The UV-visible absorbance of the composite film decreased without spectralshift by swelling with toluene, and the changes were reversible. The aggregation among Au nanoparticles in the composite film after calcination also depended on the cross-linking degree. Thus, the control of cross-linking degree of PDMS film successfully leaded to a simple way of fabricating the Au nanoparticle-PDMS composite film at the mono-dispersion state.


2004 ◽  
Vol 58 (11) ◽  
pp. 479-486 ◽  
Author(s):  
Dragoslav Stoiljkovic ◽  
Branka Pilic ◽  
Radmila Radicevic ◽  
Ivana Bakocevic ◽  
Slobodan Jovanovic ◽  
...  

The current explanations of olefin and vinyl monomer polymerization propose that monomer molecules are successively added one by one to the growing polymer chain. This may be true if the monomer molecules exist as individual species in a polymerizing system, e.g. in dilute solutions of monomer. There are cases, however, in which monomer molecules are organized: bulk liquid monomer, solid monomer, a monomer monolayer adsorbed on a support, etc. Various supra-molecular species and particles of monomer exist in such cases. In the 1960-ties, Semenov, Kargin and Kabanov proposed a theory of organized monomer polymerization. In the last 25 years, our research group has further developed and applied that theory to various polymerizing systems: the radical polymerization of compressed ethene gas, the radical polymerization of liquid methyl methacrylate, olefin polymerization by transition metals and by Al-based catalysts. An outline of the main achievements are presented in this article.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 478
Author(s):  
Gjylije Hoti ◽  
Fabrizio Caldera ◽  
Claudio Cecone ◽  
Alberto Rubin Pedrazzo ◽  
Anastasia Anceschi ◽  
...  

The cross-linking density influences the physicochemical properties of cyclodextrin-based nanosponges (CD-NSs). Although the effect of the cross-linker type and content on the NSs performance has been investigated, a detailed study of the cross-linking density has never been performed. In this contribution, nine ester-bridged NSs based on β-cyclodextrin (β-CD) and different quantities of pyromellitic dianhydride (PMDA), used as a cross-linking agent in stoichiometric proportions of 2, 3, 4, 5, 6, 7, 8, 9, and 10 moles of PMDA for each mole of CD, were synthesized and characterized in terms of swelling and rheological properties. The results, from the swelling experiments, exploiting Flory–Rehner theory, and rheology, strongly showed a cross-linker content-dependent behavior. The study of cross-linking density allowed to shed light on the efficiency of the synthesis reaction methods. Overall, our study demonstrates that by varying the amount of cross-linking agent, the cross-linked structure of the NSs matrix can be controlled effectively. As PMDA βCD-NSs have emerged over the years as a highly versatile class of materials with potential applications in various fields, this study represents the first step towards a full understanding of the correlation between their structure and properties, which is a key requirement to effectively tune their synthesis reaction in view of any specific future application or industrial scale-up.


Sign in / Sign up

Export Citation Format

Share Document