Measuring optical properties of normal breast tissue with time-resolved diffuse optical spectroscopy

Author(s):  
Nanguang Chen ◽  
Weirong Mo ◽  
Ling Chen
2004 ◽  
Vol 19 (2-3) ◽  
pp. 95-105 ◽  
Author(s):  
Natasha Shah ◽  
Albert E. Cerussi ◽  
Dorota Jakubowski ◽  
David Hsiang ◽  
John Butler ◽  
...  

Diffuse optical spectroscopy (DOS) of breast tissue provides quantitative, functional information based on optical absorption and scattering properties that cannot be obtained with other radiographic methods. DOS-measured absorption spectra are used to determine the tissue concentrations of deoxyhemoglobin (Hb-R), oxyhemoglobin (Hb-O2), lipid, and water (H2O), as well as to provide an index of tissue hemoglobin oxygen saturation (StO2). Tissue-scattering spectra provide insight into epithelial, collagen, and lipid contributions to breast density. Clinical studies of women with malignant tumors show that DOS is sensitive to processes such as increased tissue vascularization, hypoxia, and edema. In studies of healthy women, DOS detects variations in breast physiology associated with menopausal status, menstrual cycle changes, and hormone replacement. Current research involves using DOS to monitor tumor response to therapy and the co-registration of DOS with magnetic resonance imaging. By correlating DOS-derived parameters with lesion pathology and specific molecular markers, we anticipate that composite “tissue optical indices” can be developed that non-invasively characterize both tumor and normal breast-tissue function.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3680 ◽  
Author(s):  
Mrwan Alayed ◽  
Darek Palubiak ◽  
M. Deen

Time-resolved diffuse optical spectroscopy (TR-DOS) is an increasingly used method to determine the optical properties of diffusive media, particularly for medical applications including functional brain, breast and muscle measurements. For medical imaging applications, important features of new generation TR-DOS systems are low-cost, small size and efficient inverse modeling. To address the issues of low-cost, compact size and high integration capabilities, we have developed free-running (FR) single-photon avalanche diodes (SPADs) using 130 nm silicon complementary metal-oxide-semiconductor (CMOS) technology and used it in a TR-DOS prototype. This prototype was validated using assessments from two known protocols for evaluating TR-DOS systems for tissue optics applications. Following the basic instrumental performance protocol, our prototype had sub-nanosecond total instrument response function and low differential non-linearity of a few percent. Also, using light with optical power lower than the maximum permissible exposure for human skin, this prototype can acquire raw data in reflectance geometry for phantoms with optical properties similar to human tissues. Following the MEDPHOT protocol, the absolute values of the optical properties for several homogeneous phantoms were retrieved with good accuracy and linearity using a best-fitting model based on the Levenberg-Marquardt method. Overall, the results of this study show that our silicon CMOS-based SPAD detectors can be used to build a multichannel TR-DOS prototype. Also, real-time functional monitoring of human tissue such as muscles, breasts and newborn heads will be possible by integrating this detector with a time-to-digital converter (TDC).


2005 ◽  
Vol 50 (11) ◽  
pp. 2559-2571 ◽  
Author(s):  
Tomas Svensson ◽  
Johannes Swartling ◽  
Paola Taroni ◽  
Alessandro Torricelli ◽  
Pia Lindblom ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 387
Author(s):  
Giacomo Santandrea ◽  
Chiara Bellarosa ◽  
Dino Gibertoni ◽  
Maria C. Cucchi ◽  
Alejandro M. Sanchez ◽  
...  

Normal breast tissue undergoes great variations during a woman’s life as a consequence of the different hormonal stimulation. The purpose of the present study was to examine the hormonal receptor expression variations according to age, menstrual cycle, menopausal state and body mass index. To this purpose, 49 tissue samples of normal breast tissue, obtained during surgery performed for benign and malignant conditions, were immunostained with Estrogen (ER), Progesterone (PR) and Androgen receptors (AR). In addition, Ki67 and Gross Cystic Disease Fluid Protein were studied. The data obtained revealed a great variability of hormone receptor expression. ER and AR generally increased in older and post-menopausal women, while young women presented a higher proliferative rate, evaluated with Ki67. PR increase was observed in women with BMI higher than 25. The different hormonal receptor expression could favor the development of breast cancer.


2012 ◽  
Vol 4 ◽  
pp. 306-309 ◽  
Author(s):  
Abdolhassan Talaiezadeh ◽  
Seyed Nematollah Jazayeri ◽  
Jamal Nateghi

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shoghag Panjarian ◽  
Jozef Madzo ◽  
Kelsey Keith ◽  
Carolyn M. Slater ◽  
Carmen Sapienza ◽  
...  

Abstract Background DNA methylation alterations have similar patterns in normal aging tissue and in cancer. In this study, we investigated breast tissue-specific age-related DNA methylation alterations and used those methylation sites to identify individuals with outlier phenotypes. Outlier phenotype is identified by unsupervised anomaly detection algorithms and is defined by individuals who have normal tissue age-dependent DNA methylation levels that vary dramatically from the population mean. Methods We generated whole-genome DNA methylation profiles (GSE160233) on purified epithelial cells and used publicly available Infinium HumanMethylation 450K array datasets (TCGA, GSE88883, GSE69914, GSE101961, and GSE74214) for discovery and validation. Results We found that hypermethylation in normal breast tissue is the best predictor of hypermethylation in cancer. Using unsupervised anomaly detection approaches, we found that about 10% of the individuals (39/427) were outliers for DNA methylation from 6 DNA methylation datasets. We also found that there were significantly more outlier samples in normal-adjacent to cancer (24/139, 17.3%) than in normal samples (15/228, 5.2%). Additionally, we found significant differences between the predicted ages based on DNA methylation and the chronological ages among outliers and not-outliers. Additionally, we found that accelerated outliers (older predicted age) were more frequent in normal-adjacent to cancer (14/17, 82%) compared to normal samples from individuals without cancer (3/17, 18%). Furthermore, in matched samples, we found that the epigenome of the outliers in the pre-malignant tissue was as severely altered as in cancer. Conclusions A subset of patients with breast cancer has severely altered epigenomes which are characterized by accelerated aging in their normal-appearing tissue. In the future, these DNA methylation sites should be studied further such as in cell-free DNA to determine their potential use as biomarkers for early detection of malignant transformation and preventive intervention in breast cancer.


2020 ◽  
Vol 105 (5) ◽  
pp. 1617-1628 ◽  
Author(s):  
Nina Dabrosin ◽  
Charlotta Dabrosin

Abstract Context Dense breast tissue is associated with 4 to 6 times higher risk of breast cancer by poorly understood mechanisms. No preventive therapy for this high-risk group is available. After menopause, breast density decreases due to involution of the mammary gland. In dense breast tissue, this process is haltered by undetermined biological actions. Growth hormone (GH) and insulin-like binding proteins (IGFBPs) play major roles in normal mammary gland development, but their roles in maintaining breast density are unknown. Objective To reveal in vivo levels of GH, IGFBPs, and other pro-tumorigenic proteins in the extracellular microenvironment in breast cancer, in normal breast tissue with various breast density in postmenopausal women, and premenopausal breasts. We also sought to determine possible correlations between these determinants. Setting and Design Microdialysis was used to collect extracellular in vivo proteins intratumorally from breast cancers before surgery and from normal human breast tissue from premenopausal women and postmenopausal women with mammographic dense or nondense breasts. Results Estrogen receptor positive breast cancers exhibited increased extracellular GH (P < .01). Dense breasts of postmenopausal women exhibited similar levels of GH as premenopausal breasts and significantly higher levels than in nondense breasts (P < .001). Similar results were found for IGFBP-1, -2, -3, and -7 (P < .01) and for IGFBP-6 (P <.05). Strong positive correlations were revealed between GH and IGFBPs and pro-tumorigenic matrix metalloproteinases, urokinase-type plasminogen activator, Interleukin 6, Interleukin 8, and vascular endothelial growth factor in normal breast tissue. Conclusions GH pathways may be targetable for cancer prevention therapeutics in postmenopausal women with dense breast tissue.


2001 ◽  
Vol 70 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Mumtaz Iscan ◽  
Tuula Klaavuniemi ◽  
Tulay Çoban ◽  
Nilgun Kapucuoğlu ◽  
Olavi Pelkonen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document