Detection of Burmese pythons in the near infrared vs visible band

2021 ◽  
Author(s):  
Jennifer Hewitt ◽  
Orges Furxhi ◽  
Christopher Renshaw ◽  
Ronald Driggers
Keyword(s):  
2013 ◽  
Vol 655-657 ◽  
pp. 813-815 ◽  
Author(s):  
Jin Hong Xu ◽  
Jin Ting Yu

This article has studied the correlation relationship between the spectral features of polluted leaf surface of Ficus microcarpa and air dustfall in Guangzhou City. The results show that the spectral reflectance of leaves in the industrial area and large traffic area is 3-5.5% higher than that of leaves in cleaning area in the visible band, but is 10-15% lower in the near infrared band. Compared to the spectral reflectance of the cleaned leaf, the spectral reflectance of leaf on nature dirty is 6.6% higher in the visible band and 25.6% lower in the infrared band. The spectral reflectance difference between dirty leaf and cleaned leaf in the infrared band has a strong correlation with air dustfall in Guangzhou city. The correlation coefficient is 0.821. It is simple and convenient, fast, economic method to monitor the air dustfall using the spectral characteristic of Ficus microcarpa’s leaf.


2006 ◽  
Vol 18 (23) ◽  
pp. 2445-2447 ◽  
Author(s):  
R. Jiang ◽  
R. Saperstein ◽  
N. Alic ◽  
M. Nezhad ◽  
C. McKinstrie ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3238
Author(s):  
Mirko Saponaro ◽  
Athos Agapiou ◽  
Diofantos G. Hadjimitsis ◽  
Eufemia Tarantino

The consolidation of unmanned aerial vehicle (UAV) photogrammetric techniques for campaigns with high and medium observation scales has triggered the development of new application areas. Most of these vehicles are equipped with common visible-band sensors capable of mapping areas of interest at various spatial resolutions. It is often necessary to identify vegetated areas for masking purposes during the postprocessing phase, excluding them for the digital elevation models (DEMs) generation or change detection purposes. However, vegetation can be extracted using sensors capable of capturing the near-infrared part of the spectrum, which cannot be recorded by visible (RGB) cameras. In this study, after reviewing different visible-band vegetation indices in various environments using different UAV technology, the influence of the spatial resolution of orthomosaics generated by photogrammetric processes in the vegetation extraction was examined. The triangular greenness index (TGI) index provided a high level of separability between vegetation and nonvegetation areas for all case studies in any spatial resolution. The efficiency of the indices remained fundamentally linked to the context of the scenario under investigation, and the correlation between spatial resolution and index incisiveness was found to be more complex than might be trivially assumed.


2019 ◽  
Vol 11 (1) ◽  
pp. 68-71
Author(s):  
Wang Zhiwen ◽  
Yuan Wei ◽  
Guo Qianjian

Background: Nickel grating absorber has been studied and shows good absorption property in the visible band. In order to further improve the absorption performance, reflection should be reduced, and anti-reflection layer should be added upon or under the gratings. Method: In this paper, the dielectric layer is added between and upon the nickel gratings. Equivalent medium theory is used to analyze the role of dielectric layer on absorption mechanism of nickel gratings. photoresist is used to illustrate the possible practical usage of the proposed method. Results: Absorption efficiency of TM (transverse magnetic) and TE (transverse electric) polarization show growing trend with the increase of refractive index of the dielectric material. PMMA and TU7 are chosen as the dielectric material. The simulation results show that TM absorption reduced slightly in visible band, and improved by up to 86% in the near infrared region. TE absorption shows up to 79% improvement in the whole visible to near infrared waveband. Conclusion: Nickel grating based broadband absorber is analyzed in this paper. Dielectric layer is added upon the gratings, and act as the anti-reflection layer. The refractive index and layer thickness is analyzed by using equivalent medium theory. Dielectric material that has high refractive index is more desired. The designed nickel grating shows high absorption property from 450nm to 800nm for both TM and TE polarization.


2008 ◽  
Vol 26 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Rui Jiang ◽  
Camille-Sophie Bres ◽  
Nikola Alic ◽  
Evgeny Myslivets ◽  
Stojan Radic

Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7875-7887 ◽  
Author(s):  
Ying Lan ◽  
Xiaohui Zhu ◽  
Ming Tang ◽  
Yihan Wu ◽  
Jing Zhang ◽  
...  

A near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs) is developed in order to overcome the hypoxia-associated resistance in photodynamic therapy by photo-release of NO upon NIR illumination.


2020 ◽  
Vol 56 (43) ◽  
pp. 5819-5822
Author(s):  
Jing Zheng ◽  
Yongzhuo Liu ◽  
Fengling Song ◽  
Long Jiao ◽  
Yingnan Wu ◽  
...  

In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Sign in / Sign up

Export Citation Format

Share Document