Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array

2018 ◽  
Vol 57 (27) ◽  
pp. 7740 ◽  
Author(s):  
Yinzhou Yan ◽  
Jinwen Liu ◽  
Cheng Xing ◽  
Qiang Wang ◽  
Yong Zeng ◽  
...  
Author(s):  
Anatoly A. Udovenko ◽  
Alexander A. Karabtsov ◽  
Natalia M. Laptash

A classical elpasolite-type structure is considered with respect to dynamically disordered ammonium fluoro-(oxofluoro-)metallates. Single-crystal X-ray diffraction data from high quality (NH4)3HfF7 and (NH4)3Ti(O2)F5 samples enabled the refinement of the ligand and cationic positions in the cubic Fm \bar 3 m (Z = 4) structure. Electron-density atomic profiles show that the ligand atoms are distributed in a mixed (split) position instead of 24e. One of the ammonium groups is disordered near 8c so that its central atom (N1) forms a tetrahedron with vertexes in 32f. However, a center of another group (N2) remains in the 4b site, whereas its H atoms (H2) occupy the 96k positions instead of 24e and, together with the H3 atom in the 32f position, they form eight spatial orientations of the ammonium group. It is a common feature of all ammonium fluoroelpasolites with orientational disorder of structural units of a dynamic nature.


1997 ◽  
Vol 52 (12) ◽  
pp. 1467-1470 ◽  
Author(s):  
Petra Wollesen ◽  
Joachim W. Kaiser ◽  
Wolfgang Jeitschko

Abstract The five compounds LnZnSbO (Ln = La - Nd, Sm) were prepared by annealing cold-pressed pellets of the lanthanoids, zinc oxide, and antimony, or by reacting these components in a NaCl/KCl flux. They crystallize with the tetragonal ZrCuSiAs type structure, which was refined from single-crystal X-ray data of CeZnSbO : P 4/nmm, a = 419.76(4), c = 947.4(1) pm, Z = 2, R = 0.022 for 165 structure factors and 12 variable parameters. Chemical bonding in this and the formally isotypic compound CeZn1-xSb2 is briefly discussed.


2006 ◽  
Vol 527-529 ◽  
pp. 299-302
Author(s):  
Hideki Shimizu ◽  
Yosuke Aoyama

3C-SiC films grown on carbonized Si (100) by plasma-assisted CVD have been investigated with systematic changes in flow rate of monosilane (SiH4) and propane (C3H8) as source gases. The deposition rate of the films increased monotonously and the microstructures of the films changed from 3C-SiC single crystal to 3C-SiC polycrystal with increasing flow rate of SiH4. Increasing C3H8 keeps single crystalline structure but results in contamination of α-W2C, which is a serious problem for the epitaxial growth. To obtain high quality 3C-SiC films, the effects of C3H8 on the microstructures of the films have been investigated by reducing the concentration of C3H8. Good quality 3C-SiC single crystal on Si (100) is grown at low net flow rate of C3H8 and SiH4, while 3C-SiC single crystal on Si (111) is grown at low net flow rate of C3H8 and high net flow rate of SiH4. It is expected that 3C-SiC epitaxial growth on Si (111) will take placed at a higher deposition rate and lower substrate temperature than that on Si (100).


Small ◽  
2015 ◽  
Vol 12 (7) ◽  
pp. 892-901 ◽  
Author(s):  
Conor T. Riley ◽  
Joseph S. T. Smalley ◽  
Kirk W. Post ◽  
Dimitri N. Basov ◽  
Yeshaiahu Fainman ◽  
...  

2013 ◽  
Vol 38 (19) ◽  
pp. 3754 ◽  
Author(s):  
Zong-Wei Ma ◽  
Jun-Pei Zhang ◽  
Xia Wang ◽  
Ying Yu ◽  
Jun-Bo Han ◽  
...  

1994 ◽  
Vol 65 (9) ◽  
pp. 1106-1108 ◽  
Author(s):  
Z. Li ◽  
C. M. Foster ◽  
D. Guo ◽  
H. Zhang ◽  
G. R. Bai ◽  
...  

Author(s):  
Gohil S. Thakur ◽  
Hans Reuter ◽  
Claudia Felser ◽  
Martin Jansen

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.


Sign in / Sign up

Export Citation Format

Share Document