Integration and Measurement of High Definition Optical Polymer Waveguide Structures on Printed Circuit Board

2005 ◽  
Author(s):  
Fengtao Wang ◽  
Fuhan Liu ◽  
Gee-Kung Chang ◽  
Ali Adibi ◽  
Matt Moynihan ◽  
...  
2013 ◽  
Vol 55 (9) ◽  
pp. 1999-2003
Author(s):  
Chih-Yuan Tsou ◽  
Shih-Hsiang Hsu ◽  
Chih-Ming Wang ◽  
Sheng-Chieh Tseng

2014 ◽  
Author(s):  
Jung Woon Lim ◽  
Seon Hoon Kim ◽  
Jong-Sup Kim ◽  
Jeong Ho Kim ◽  
Yune Hyoun Kim ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Siyu Xia ◽  
Fan Wang ◽  
Fei Xie ◽  
Lei Huang ◽  
Qi Wang ◽  
...  

For ensuring the safety and reliability of electronic equipment, it is a necessary task to detect the surface defects of the printed circuit board (PCB). Due to the smallness, complexity and diversity of minor defects of PCB, it is difficult to identify minor defects in PCB with traditional methods. And the target detection method based on deep learning faces the problem of imbalance between foreground and background when detecting minor defects. Therefore, this paper proposes a minor defect detection method on PCB based on FL-RFCN (focal loss and Region-based Fully Convolutional Network) and PHFE (parallel high-definition feature extraction). Firstly, this paper uses the Region-based Fully Convolutional Network(R-FCN) to identify minor defects on the PCB. Secondly, the focal loss is used to solve the problem of data imbalance in neural networks. Thirdly, the parallel high-definition feature extraction algorithm is used to improve the recognition rate of minor defects. In the detection of minor defects on PCB, the ablation experiment proves that the mean Average accuracy (mAP) of the proposed method is increased by 7.4. In comparative experiments, it is found that the mAP of the method proposed in this paper is 12.3 higher than YOLOv3 and 6.7 higher than Faster R-CNN.


2012 ◽  
Vol 132 (6) ◽  
pp. 404-410 ◽  
Author(s):  
Kenichi Nakayama ◽  
Kenichi Kagoshima ◽  
Shigeki Takeda

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


Author(s):  
Prabjit Singh ◽  
Ying Yu ◽  
Robert E. Davis

Abstract A land-grid array connector, electrically connecting an array of plated contact pads on a ceramic substrate chip carrier to plated contact pads on a printed circuit board (PCB), failed in a year after assembly due to time-delayed fracture of multiple C-shaped spring connectors. The land-grid-array connectors analyzed had arrays of connectors consisting of gold on nickel plated Be-Cu C-shaped springs in compression that made electrical connections between the pads on the ceramic substrates and the PCBs. Metallography, fractography and surface analyses revealed the root cause of the C-spring connector fracture to be plating solutions trapped in deep grain boundary grooves etched into the C-spring connectors during the pre-plating cleaning operation. The stress necessary for the stress corrosion cracking mechanism was provided by the C-spring connectors, in the land-grid array, being compressed between the ceramic substrate and the printed circuit board.


Author(s):  
William Ng ◽  
Kevin Weaver ◽  
Zachary Gemmill ◽  
Herve Deslandes ◽  
Rudolf Schlangen

Abstract This paper demonstrates the use of a real time lock-in thermography (LIT) system to non-destructively characterize thermal events prior to the failing of an integrated circuit (IC) device. A case study using a packaged IC mounted on printed circuit board (PCB) is presented. The result validated the failing model by observing the thermal signature on the package. Subsequent analysis from the backside of the IC identified a hot spot in internal circuitry sensitive to varying value of external discrete component (inductor) on PCB.


Sign in / Sign up

Export Citation Format

Share Document