Monolithic Near Infrared LED System for Plants Health Monitoring Sensors

Author(s):  
Abdullah J. Zakariya ◽  
Ebraheem Sultan
2021 ◽  
Vol 255 ◽  
pp. 01002
Author(s):  
Daniel Benedikovic ◽  
Leopold Virot ◽  
Guy Aubin ◽  
Jean-Michel Hartmann ◽  
Farah Amar ◽  
...  

Optical photodetectors are at the forefront of photonic research since the rise of integrated optics. Photodetectors are fundamental building blocks for chip-scale optoelectronics, enabling conversion of light into an electrical signal. Such devices play a key role in many surging applications from communication and computation to sensing, biomedicine and health monitoring, to name a few. However, chip integration of optical photodetectors with improved performances is an on-going challenge for mainstream optical communications at near-infrared wavelengths. Here, we present recent advances in heterostructured silicon-germanium-silicon p-i-n photodetectors, enabling high-speed detection on a foundry-compatible monolithic platform.


ACS Sensors ◽  
2020 ◽  
Vol 5 (10) ◽  
pp. 3264-3273
Author(s):  
Jiemin Wang ◽  
Zhidong Teng ◽  
Liang Zhang ◽  
Yuexia Yang ◽  
Jing Qian ◽  
...  

Author(s):  
Kery Prettyman ◽  
Meghna Babbar-Sebens ◽  
Christopher E. Parrish ◽  
Jeremy Matthew Babbar-Sebens

Abstract Vegetation health monitoring is key to identifying early signs of water stress, pollutant-induced toxicity, and plant diseases in green urban stormwater facilities. However, rigorous monitoring to collect accurate quantitative data is an expensive and time-consuming process. This paper examines the feasibility of using uninhabited aircraft systems (UAS), in comparison to standard ground-based methods, for monitoring biomass and primary production in two bioswale cells at an urban stormwater facility. Implementation of the UAS-based approach involved flight planning in an urban area to meet resolution requirements of bioswale imagery obtained from near-infrared and red-green-blue cameras. The resulting normalized difference vegetation index (NDVI) estimated from UAS data was tracked over a 2-month period during the transition from spring to summer, showing the spatial distribution of NDVI and the change in vegetation coverage areas over time. In comparison, ground-based measurements of the fraction of intercepted photosynthetically active radiation (PAR) presented multiple practical challenges during implementation in the field, leading to over- and underestimates of intercepted PAR. Overall, UAS-derived NDVI was found to be a valuable reflectance-based, vegetation health-monitoring methodology that can be used by utilities and cities for practical, cost-effective, and rapid assessment of vegetation stress and for long-term maintenance in green stormwater facilities.


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7875-7887 ◽  
Author(s):  
Ying Lan ◽  
Xiaohui Zhu ◽  
Ming Tang ◽  
Yihan Wu ◽  
Jing Zhang ◽  
...  

A near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs) is developed in order to overcome the hypoxia-associated resistance in photodynamic therapy by photo-release of NO upon NIR illumination.


2020 ◽  
Vol 56 (43) ◽  
pp. 5819-5822
Author(s):  
Jing Zheng ◽  
Yongzhuo Liu ◽  
Fengling Song ◽  
Long Jiao ◽  
Yingnan Wu ◽  
...  

In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Sign in / Sign up

Export Citation Format

Share Document