scholarly journals A feasibility study of uninhabited aircraft systems for rapid and cost-effective plant stress monitoring at green stormwater infrastructure facilities

Author(s):  
Kery Prettyman ◽  
Meghna Babbar-Sebens ◽  
Christopher E. Parrish ◽  
Jeremy Matthew Babbar-Sebens

Abstract Vegetation health monitoring is key to identifying early signs of water stress, pollutant-induced toxicity, and plant diseases in green urban stormwater facilities. However, rigorous monitoring to collect accurate quantitative data is an expensive and time-consuming process. This paper examines the feasibility of using uninhabited aircraft systems (UAS), in comparison to standard ground-based methods, for monitoring biomass and primary production in two bioswale cells at an urban stormwater facility. Implementation of the UAS-based approach involved flight planning in an urban area to meet resolution requirements of bioswale imagery obtained from near-infrared and red-green-blue cameras. The resulting normalized difference vegetation index (NDVI) estimated from UAS data was tracked over a 2-month period during the transition from spring to summer, showing the spatial distribution of NDVI and the change in vegetation coverage areas over time. In comparison, ground-based measurements of the fraction of intercepted photosynthetically active radiation (PAR) presented multiple practical challenges during implementation in the field, leading to over- and underestimates of intercepted PAR. Overall, UAS-derived NDVI was found to be a valuable reflectance-based, vegetation health-monitoring methodology that can be used by utilities and cities for practical, cost-effective, and rapid assessment of vegetation stress and for long-term maintenance in green stormwater facilities.

2020 ◽  
Vol 12 (12) ◽  
pp. 1906 ◽  
Author(s):  
Jane J. Meiforth ◽  
Henning Buddenbaum ◽  
Joachim Hill ◽  
James D. Shepherd ◽  
John R. Dymond

New Zealand kauri trees are threatened by the kauri dieback disease (Phytophthora agathidicida (PA)). In this study, we investigate the use of pan-sharpened WorldView-2 (WV2) satellite and Light Detection and Ranging (LiDAR) data for detecting stress symptoms in the canopy of kauri trees. A total of 1089 reference crowns were located in the Waitakere Ranges west of Auckland and assessed by fieldwork and the interpretation of aerial images. Canopy stress symptoms were graded based on five basic stress levels and further refined for the first symptom stages. The crown polygons were manually edited on a LiDAR crown height model. Crowns with a mean diameter smaller than 4 m caused most outliers with the 1.8 m pixel size of the WV2 multispectral bands, especially at the more advanced stress levels of dying and dead trees. The exclusion of crowns with a diameter smaller than 4 m increased the correlation in an object-based random forest regression from 0.85 to 0.89 with only WV2 attributes (root mean squared error (RMSE) of 0.48, mean absolute error (MAE) of 0.34). Additional LiDAR attributes increased the correlation to 0.92 (RMSE of 0.43, MAE of 0.31). A red/near-infrared (NIR) normalised difference vegetation index (NDVI) and a ratio of the red and green bands were the most important indices for an assessment of the full range of stress symptoms. For detection of the first stress symptoms, an NDVI on the red-edge and green bands increased the performance. This study is the first to analyse the use of spaceborne images for monitoring canopy stress symptoms in native New Zealand kauri forest. The method presented shows promising results for a cost-efficient stress monitoring of kauri crowns over large areas. It will be tested in a full processing chain with automatic kauri identification and crown segmentation.


2019 ◽  
Vol 11 (7) ◽  
pp. 851 ◽  
Author(s):  
Xuehong Chen ◽  
Zhengfei Guo ◽  
Jin Chen ◽  
Wei Yang ◽  
Yanming Yao ◽  
...  

Most vegetation indices (VIs) of remote sensing were designed based on the concept of soil-line, which represents a linear correlation between bare soil reflectance at the red and near-infrared (NIR) bands. Unfortunately, the soil-line can only suppress brightness variation, not color differences of bare soil. Consequently, soil variation has a considerable impact on vegetation indices, although significant efforts have been devoted to this issue. In this study, a new soil-line is established in a new feature space of the NIR band and a virtual band that combines the red and shortwave-infrared (SWIR) bands (0.74ρred+0.26ρswir). Then, plus versions of vegetation indices (VI+), i.e., normalized difference vegetation index plus (NDVI+), enhanced vegetation index plus (EVI+), soil-adjusted vegetation index plus (SAVI+), and modified soil-adjusted vegetation index plus (MSAVI+), are proposed based on the new soil-line, which replaces the red band with the red-SWIR band in the vegetation indices. Soil spectral data from several spectral libraries confirm that bare soil has much less variation for VI+ than the original VI. Simulation experiments show that VI+ correlates better with fractional vegetation coverage (FVC) and leaf area index (LAI) than original VI. Ground measured LAI data collected from BigFoot, VALERI, and other previous references also confirm that VI+ derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data correlates better with ground measured LAI than original VI. These data analyses suggest that replacing the red band with the red-SWIR band can reduce the sensitivity of VIs to soil background. We recommend employing the proposed NDVI+, EVI+, SAVI+, and MSAVI+ in applications of large area, sparse vegetation, or when soil color variation cannot be neglected, although sensitivity to soil moisture and clay content might cause slight side effects for the proposed VI+s.


2016 ◽  
Vol 19 (2) ◽  
pp. 138-145
Author(s):  
Thu Thi Thanh Phan ◽  
Rikimaru Atsushi ◽  
Kenta Sakata ◽  
Kazuyoshi Takahashi ◽  
Junki Abe

Monitoring of rice growth is a requirement for high quality rice production. In addtion to plant height, number stem and rice leaf color, vegetation coverage (VC) which represents for percentage of ground covered by rice plant is also considered as an important index to validate rice growth. Thus, the study is to estimate rice vegetation coverage from difference vegetation index (DVI) calculated from reflectance of near-infrared and red band of Landsat 7 and 8 images. The field observations of the reflectance and the VC were carried out in two paddy rice varieties in 2013. Paddy field reflectance was observed by spectrometer Ocean Optics SD2000. The photos of paddies were taken from the height of 1 m by a digital camera in order to calculate the VC. The reflectances of paddy field corresponding to red and near-infrared bands of Landsat 7 and 8 were calculated from the field observation data. Satellite reflectance was also converted from pixel value of Landsat images. According to the data analysis, VC rapidly increased in two fields and got saturation status (VC>90%) at 65 days after transplanting (DAT) in the early July. DVI was approximately 25% when VC saturated. Additionally, DVI had strong correlation with VC with high determination coefficient (r2 =0.9) when VC was less than 90%. Thus, VC were computed from DVI, calculated from reflectances of Landsat images, using a regression model of VC and DVI. From the result of comparison between the estimated and computed VC, the possibility of estimating VC from DVI calculated from Landsat reflectance is confirmed.


2022 ◽  
Vol 14 (2) ◽  
pp. 293
Author(s):  
Mary Ruth McDonald ◽  
Cyril Selasi Tayviah ◽  
Bruce D. Gossen

Aerial surveillance could be a useful tool for early detection and quantification of plant diseases, however, there are often confounding effects of other types of plant stress. Stemphylium leaf blight (SLB), caused by the fungus Stemphylium vesicarium, is a damaging foliar disease of onion. Studies were conducted to determine if near-infrared photographic images could be used to accurately assess SLB severity in onion research trials in the Holland Marsh in Ontario, Canada. The site was selected for its uniform soil and level topography. Aerial photographs were taken in 2015 and 2016 using an Xnite-Canon SX230NDVI with a near-infrared filter, mounted on a modified Cine Star—8 MK Heavy Lift RTF octocopter UAV. Images were taken at 15–20 m above the ground, providing an average of 0.5 cm/pixel and a field of view of 15 × 20 m. Photography and ground assessments of disease were carried out on the same day. NDVI (normalized difference vegetation index), green NDVI, chlorophyll index and plant senescence reflective index (PSRI) were calculated from the images. There were differences in SLB incidence and severity in the field plots and differences in the vegetative indices among the treatments, but there were no correlations between disease assessments and any of the indices.


2019 ◽  
Vol 2 (1) ◽  
pp. 11-14
Author(s):  
Wahyu Adi

Pulau Kecil Gelasa merupakan daerah yang belum banyak diteliti. Pemetaan ekosistem di pulau kecil dilakukan dengan bantuan citra Advanced Land Observing Satellite (ALOS). Penelitian terdahulu diketahui bahwa ALOS memiliki kemampuan memetakan terumbu karang dan padang lamun di perairan dangkal serta mampu memetakan kerapatan penutupan vegetasi. Metode interpretasi citra menggunakan alogaritma indeks vegetasi pada citra ALOS yaitu NDVI (Normalized Difference Vegetation Index), serta pendekatan Lyzengga untuk mengkoreksi kolom perairan. Hasil penelitian didapatkan luasan Padang Lamun di perairan dangkal 41,99 Ha, luasan Terumbu Karang 125,57 Ha. Hasil NDVI di daratan/ pulau kecil Gelasa untuk Vegetasi Rapat seluas 47,62 Ha; luasan penutupan Vegetasi Sedang 105,86 Ha; dan penutupan Vegetasi Jarang adalah 34,24 Ha.   Small Island Gelasa rarely studied. Mapping ecosystems on small islands with the image of Advanced Land Observing Satellite (ALOS). Previous research has found that ALOS has the ability to map coral reefs and seagrass beds in shallow water, and is able to map vegetation cover density. The method of image interpretation uses the vegetation index algorithm in the ALOS image, NDVI (Normalized Difference Vegetation Index), and the Lyzengga approach to correct the water column. The results of the study were obtained in the area of Seagrass Padang in the shallow waters of 41.99 ha, the area of coral reefs was 125.57 ha. NDVI results on land / small islands Gelasa for dense vegetation of 47.62 ha; area of Medium Vegetation coverage 105.86 Ha; and the coverage of Rare Vegetation is 34.24 Ha.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lilha M. B. Santos ◽  
Mathijs Mutsaers ◽  
Gabriela A. Garcia ◽  
Mariana R. David ◽  
Márcio G. Pavan ◽  
...  

AbstractDeployment of Wolbachia to mitigate dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) transmission is ongoing in 12 countries. One way to assess the efficacy of Wolbachia releases is to determine invasion rates within the wild population of Aedes aegypti following their release. Herein we evaluated the accuracy, sensitivity and specificity of the Near Infrared Spectroscopy (NIRS) in estimating the time post death, ZIKV-, CHIKV-, and Wolbachia-infection in trapped dead female Ae. aegypti mosquitoes over a period of 7 days. Regardless of the infection type, time post-death of mosquitoes was accurately predicted into four categories (fresh, 1 day old, 2–4 days old and 5–7 days old). Overall accuracies of 93.2, 97 and 90.3% were observed when NIRS was used to detect ZIKV, CHIKV and Wolbachia in dead Ae. aegypti female mosquitoes indicating NIRS could be potentially applied as a rapid and cost-effective arbovirus surveillance tool. However, field data is required to demonstrate the full capacity of NIRS for detecting these infections under field conditions.


2021 ◽  
pp. 096703352199911
Author(s):  
SR Shukla ◽  
S Shashikala ◽  
M Sujatha

Near infrared (NIR) spectroscopy is developing as an advanced and non-invasive tool in the wood, wood products and forestry sectors. It may be applied as a rapid and cost effective technique for assessment of different wood quality parameters of timber species. In the present study, NIR spectra of heartwood samples of Tectona grandis (teak) were collected before measuring fibre morphological parameters (fibre length, fibre diameter and fibre lumen diameter)and main chemical constituents (cellulose, hemicellulose, lignin and extractives) using maceration and wet chemistry methods respectively. Multivariate partial least squares (PLS) regression was applied to develop the calibration models between measured values of wood parameters and NIR spectral data. Pre-processing of NIR spectra demonstrated better predictions based on higher values of correlation coefficient for estimation (R2), validation (Rcv 2 ), ratio of performance to deviation (RPD), and lower values of root mean square errors of estimation (RMSEE), cross-validation (RMSECV) and number of latent variable (rank). Internal cross-validation was used to find the optimum rank. Robust calibrations models with high R2 (>0.87), low errors and high RPD values (> 2.93) were observed from PLS analysis for fibre morphological parameters and main chemical constituents of teak. These linear models may be applied for rapid and cost effective estimation of different fibre parameters and chemical constituents in routine testing and evaluation procedures for teak.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Yahui Guo ◽  
Jing Zeng ◽  
Wenxiang Wu ◽  
Shunqiang Hu ◽  
Guangxu Liu ◽  
...  

Timely monitoring of the changes in coverage and growth conditions of vegetation (forest, grass) is very important for preserving the regional and global ecological environment. Vegetation information is mainly reflected by its spectral characteristics, namely, differences and changes in green plant leaves and vegetation canopies in remote sensing domains. The normalized difference vegetation index (NDVI) is commonly used to describe the dynamic changes in vegetation, but the NDVI sequence is not long enough to support the exploration of dynamic changes due to many reasons, such as changes in remote sensing sensors. Thus, the NDVI from different sensors should be scientifically combined using logical methods. In this study, the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI are combined using the Savitzky–Golay (SG) method and then utilized to investigate the temporal and spatial changes in the vegetation of the Ruoergai wetland area (RWA). The dynamic spatial and temporal changes and trends of the NDVI sequence in the RWA are analyzed to evaluate and monitor the growth conditions of vegetation in this region. In regard to annual changes, the average annual NDVI shows an overall increasing trend in this region during the past three decades, with a linear trend coefficient of 0.013/10a, indicating that the vegetation coverage has been continuously improving. In regard to seasonal changes, the linear trend coefficients of NDVI are 0.020, 0.021, 0.004, and 0.004/10a for spring, summer, autumn, and winter, respectively. The linear regression coefficient between the gross domestic product (GDP) and NDVI is also calculated, and the coefficients are 0.0024, 0.0015, and 0.0020, with coefficients of determination (R2) of 0.453, 0.463, and 0.444 for Aba, Ruoergai, and Hongyuan, respectively. Thus, the positive correlation coefficients between the GDP and the growth of NDVI may indicate that increased societal development promotes vegetation in some respects by resulting in the planting of more trees or the promotion of tree protection activities. Through the analysis of the temporal and spatial NDVI, it can be assessed that the vegetation coverage is relatively large and the growth condition of vegetation in this region is good overall.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fan Liu ◽  
Chuankuan Wang ◽  
Xingchang Wang

Abstract Background Vegetation indices (VIs) by remote sensing are widely used as simple proxies of the gross primary production (GPP) of vegetation, but their performances in capturing the inter-annual variation (IAV) in GPP remain uncertain. Methods We evaluated the performances of various VIs in tracking the IAV in GPP estimated by eddy covariance in a temperate deciduous forest of Northeast China. The VIs assessed included the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the near-infrared reflectance of vegetation (NIRv) obtained from tower-radiometers (broadband) and the Moderate Resolution Imaging Spectroradiometer (MODIS), respectively. Results We found that 25%–35% amplitude of the broadband EVI tracked the start of growing season derived by GPP (R2: 0.56–0.60, bias < 4 d), while 45% (or 50%) amplitudes of broadband (or MODIS) NDVI represented the end of growing season estimated by GPP (R2: 0.58–0.67, bias < 3 d). However, all the VIs failed to characterize the summer peaks of GPP. The growing-season integrals but not averaged values of the broadband NDVI, MODIS NIRv and EVI were robust surrogates of the IAV in GPP (R2: 0.40–0.67). Conclusion These findings illustrate that specific VIs are effective only to capture the GPP phenology but not the GPP peak, while the integral VIs have the potential to mirror the IAV in GPP.


Author(s):  
Lorenzo Cotrozzi

AbstractSustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems. This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing forest disturbances induced by diseases in a timely and cost-effective manner. The basic concepts of vegetation spectroscopy and its application in phytopathology are first outlined then the literature on the topic is discussed. Using several optical sensors from leaf to landscape-level, a number of forest diseases characterized by variable pathogenic processes have been detected, identified and quantified in many country sites worldwide. Overall, these reviewed studies have pointed out the green and red regions of the visible spectrum, the red-edge and the early near-infrared as the spectral regions most sensitive to the disease development as they are mostly related to chlorophyll changes and symptom development. Late disease conditions particularly affect the shortwave-infrared region, mostly related to water content. This review also highlights some major issues to be addressed such as the need to explore other major forest diseases and geographic areas, to further develop hyperspectral sensors for early detection and discrimination of forest disturbances, to improve devices for remote sensing, to implement long-term monitoring, and to advance algorithms for exploitation of spectral data. Achieving of these goals will enhance the capability of vegetation spectroscopy in early detection of forest stress and in managing forest diseases.


Sign in / Sign up

Export Citation Format

Share Document