Influence of spark size and temperature on LIBS gating for optimal detection limits for toxic metals

Author(s):  
Steven Buckley ◽  
Gregg Lithgow ◽  
Francesco Ferioli ◽  
Elizabeth Smallwood
Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


Author(s):  
R. Packwood ◽  
M.W. Phaneuf ◽  
V. Weatherall ◽  
I. Bassignana

The development of specialized analytical instruments such as the SIMS, XPS, ISS etc., all with truly incredible abilities in certain areas, has given rise to the notion that electron probe microanalysis (EPMA) is an old fashioned and rather inadequate technique, and one that is of little or no use in such high technology fields as the semiconductor industry. Whilst it is true that the microprobe does not possess parts-per-billion sensitivity (ppb) or monolayer depth resolution it is also true that many times these extremes of performance are not essential and that a few tens of parts-per-million (ppm) and a few tens of nanometers depth resolution is all that is required. In fact, the microprobe may well be the second choice method for a wide range of analytical problems and even the method of choice for a few.The literature is replete with remarks that suggest the writer is confusing an SEM-EDXS combination with an instrument such as the Cameca SX-50. Even where this confusion does not exist, the literature discusses microprobe detection limits that are seldom stated to be as low as 100 ppm, whereas there are numerous element combinations for which 10-20 ppm is routinely attainable.


Author(s):  
A. P. Kovarsky ◽  
V. S. Strykanov

GaN epitaxial films were analyzed by Secondary Ion Mass Spectrometry (SIMS). Standard implanted samples were used to determine the appropriate analytical conditions for analysis of impurities. The dose and energy of implantation for selected elements (Mg, Al, Si, Zn, Cd, H, C and O) were chosen so the maximum impurity concentration was not more than 1020 atoms/cm3. The optimum analysis conditions were ascertained from the standards for each element, and the detection limits were deduced from the background levels of the implantation profiles. We demonstate that lower detection limits of 1015 atoms/cm3 with a dynamic range 103 − 105 are possible. Zn and Cd have low ion yields, so the minimum detection level for these elements is the background level of the detector. The detection limits of the other elements are determined by the contamination of an initial GaN matrix.


2009 ◽  
Vol 17 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Viktoria Feigl ◽  
Nikolett Uzinger ◽  
Katalin Gruiz

2018 ◽  
Vol 84 (12) ◽  
pp. 5-19
Author(s):  
D. N. Bock ◽  
V. A. Labusov

A review of publications regarding detection of non-metallic inclusions in metal alloys using optical emission spectrometry with single-spark spectrum registration is presented. The main advantage of the method - an extremely short time of measurement (~1 min) – makes it useful for the purposes of direct production control. A spark-induced impact on a non-metallic inclusion results in a sharp increase (flashes) in the intensities of spectral lines of the elements that comprise the inclusion because their content in the metal matrix is usually rather small. The intensity distribution of the spectral line of the element obtained from several thousand of single-spark spectra consists of two parts: i) the Gaussian function corresponding to the content of the element in a dissolved form, and ii) an asymmetric additive in the region of high intensity values ??attributed to inclusions. Their quantitative determination is based on the assumption that the intensity of the spectral line in the single-spark spectrum is proportional to the content of the element in the matter ablated by the spark. Thus, according to the calibration dependence constructed using samples with a certified total element content, it is possible not only to determine the proportions of the dissolved and undissolved element, but also the dimensions of the individual inclusions. However, determination of the sizes is limited to a range of 1 – 20 µm. Moreover, only Al-containing inclusions can be determined quantitatively nowadays. Difficulties occur both with elements hardly dissolved in steels (O, Ca, Mg, S), and with the elements which exhibit rather high content in the dissolved form (Si, Mn). It is also still impossible to determine carbides and nitrides in steels using C and N lines. The use of time-resolved spectrometry can reduce the detection limits for inclusions containing Si and, possibly, Mn. The use of the internal standard in determination of the inclusions can also lower the detection limits, but may distort the results. Substitution of photomultipliers by solid-state linear radiation detectors provided development of more reliable internal standard, based on the background value in the vicinity of the spectral line. Verification of the results is difficult in the lack of standard samples of composition of the inclusions. Future studies can expand the range of inclusions to be determined by this method.


2013 ◽  
Vol 12 (3) ◽  
pp. 239-247

The removal of heavy metals from wastewaters is a matter of paramount importance due to the fact that their high toxicity causes major environmental pollution problems. One of the most efficient, applicable and low cost methods for the removal of toxic metals from aqueous solutions is that of their adsorption on an inorganic adsorbent. In order to achieve high efficiency, it is important to understand the influence of the solution parameters on the extent of the adsorption, as well as the kinetics of the adsorption. In the present work, the adsorption of Cu(II) species onto TiO2 surface was studied. It was found that the adsorption is a rapid process and it is not affected by the value of ionic strength. In addition, it was found that by increasing the pH, the adsorbed amount of Cu2+ ions and the value of the adsorption constant increase, whereas the value of the lateral interaction energy decreases.


Sign in / Sign up

Export Citation Format

Share Document