Nonlinear Propagation Characteristics of 10 Gbps Optical Signal at and near Zero Dispersion of Dispersion-Shifted Optical Fiber

2017 ◽  
Author(s):  
Xin Zhang ◽  
Yasuhiro Aoki
2021 ◽  
Vol 32 ◽  
Author(s):  
Binh Pham Thanh ◽  
Thuy Van Nguyen ◽  
Van Hoi Pham ◽  
Huy Bui ◽  
Thi Hong Cam Hoang ◽  
...  

In this paper, we report a new type of refractometer based on a D-shaped fiber Bragg grating (FBG) integrated in a loop-mirror optical fiber laser. This proposed sensor is used in wavelength interrogation method, in which the D-shaped FBG is applied as a refractive index (RI) sensing probe and a mirror to select mode of laser. The D-shaped FBG is prepared by the removal of a portion of the fiber cladding covering the FBG by means of side-polishing technique. The D-shaped FBG sensing probe integrated in a loop-mirror optical fiber laser with saturated pump technique, the characteristics of sensing signals have been improved to obtain stable intensity, narrower bandwidth and higher optical signal-to-noise ratio compare to normal reflection configuration. The limit of detection (LOD) of this sensor can be achieved to 2.95 x 10-4 RIU in the refractive index (RI) range of 1.42-1.44. Accordingly, we believe that the proposed refractometer has a huge potential for applications in biochemical-sensing technique.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. A. Perez-Herrera ◽  
M. Bravo ◽  
P. Roldan-Varona ◽  
D. Leandro ◽  
L. Rodriguez-Cobo ◽  
...  

AbstractIn this work, an experimental analysis of the performance of different types of quasi-randomly distributed reflectors inscribed into a single-mode fiber as a sensing mirror is presented. These artificially-controlled backscattering fiber reflectors are used in short linear cavity fiber lasers. In particular, laser emission and sensor application features are analyzed when employing optical tapered fibers, micro-drilled optical fibers and 50 μm-waist or 100 μm-waist micro-drilled tapered fibers (MDTF). Single-wavelength laser with an output power level of about 8.2 dBm and an optical signal-to-noise ratio of 45 dB were measured when employing a 50 μm-waist micro-drilled tapered optical fiber. The achieved temperature sensitivities were similar to those of FBGs; however, the strain sensitivity improved more than one order of magnitude in comparison with FBG sensors, attaining slope sensitivities as good as 18.1 pm/με when using a 50 μm-waist MDTF as distributed reflector.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4862
Author(s):  
Blaž Pongrac ◽  
Denis Đonlagic ◽  
Matej Njegovec ◽  
Dušan Gleich

This paper presents a frequency-modulated optical signal generator in the THz band. The proposed method is based on a fast optical frequency sweep of a single narrowband laser diode used together with an optical fiber interferometer. The optical frequency sweep using a single laser diode is achieved by generating short current pulses with a high amplitude, which are driving the laser diode. Theoretical analysis showed that the modulation frequency could be changed by the optical path difference of the interferometer or optical frequency sweep rate of a laser diode. The efficiency of the optical signal generator with Michelson and Fabry–Perot interferometers is theoretically analyzed and experimentally evaluated for three different scenarios. Interferometers with different optical path differences and a fixed optical frequency sweep rate were used in the first scenario. Different optical frequency sweep rates and fixed optical path differences of the interferometers were used in the second scenario. This paper presents a method for optical chirp generation using a programmable current pulse waveform, which drives a laser diode to achieve nonlinear optical sweep with a fixed optical path difference of the interferometer. The experimental results showed that the proposed signals could be generated within a microwave (1–30 GHz) and THz band (0.1–0.3 THz).


2013 ◽  
Vol 313-314 ◽  
pp. 653-657
Author(s):  
Yan Chun Wang ◽  
Chang Wei Sun

A new method for the properties measurement of polymer optical fiber (POF) using pseudo-random sequence is introduced. The light source modulated by pseudo-random sequence is injected into the POF. The output optical signal after photoelectric conversion is made the correlation detection with pseudo-random sequence, and finally the correlation operation is carried out based on Labview software. Because pseudo-random sequence performs well on randomicity and it has the correlation properties similar to that of white noise, interference and noise have little influence on the peak of correlation function during the measurement, and the signal-to-noise ratio (SNR) of the output signal can be improved obviously. The measuring method is studied both theoretically and experimentally. Experimental results show that the SNR of the output signal can be improved by 25~40dB for the signal with SNR-15dB to 6dB, and the measuring precision is improved by this method.


2011 ◽  
Vol 78 (2) ◽  
pp. 125-131 ◽  
Author(s):  
M. ASADUZZAMAN ◽  
A. A. MAMUN

AbstractThe nonlinear propagation characteristics of Gardner solitons (GSs) in a non-planar (cylindrical and spherical) two-ion-temperature unmagnetized dusty plasma, whose constituents are inertial negative dust, Boltzmann electrons and ions with two distinctive temperatures, are investigated by deriving the modified Gardner (mG) equation. The standard reductive perturbation method is employed to derive the mG equation. The basic features of non-planar dust-acoustic (DA) GSs are analyzed. It has been found that the basic characteristics of GSs, which are shown to exist for the values of ni10/Zdnd0 around 0.311, for ni20/Zdnd0 = 0.5, Ti1/Te = 0.07, and Ti1/Ti2 = 0.05 [where ni10 (ni20) is the lower (higher) temperature ion number density at equilibrium, Ti1 (Ti2) is the lower (higher) temperature of ions, Te is the electron temperature, Zd is the number of electrons residing on the dust grain surface, and nd0 is the equilibrium dust number density] are different from those of Korteweg-de Vries solitons, which do not exist around ni10/Zdnd0 ≃ 0.311. It has been found that the propagation characteristics of non-planar DA GSs significantly differ from those of planar ones.


Sign in / Sign up

Export Citation Format

Share Document