Cell-Cell Interactions in Diseased Conditions Analyzed by Two Photon, Three Dimensional, and High-Speed in Vivo Microscope: From Visualization to Quantification

Author(s):  
Satoshi Nishimura
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2008 ◽  
Vol 14 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Troy A. Baudino ◽  
Alex McFadden ◽  
Charity Fix ◽  
Joshua Hastings ◽  
Robert Price ◽  
...  

Patterning of cells is critical to the formation and function of the normal organ, and it appears to be dependent upon internal and external signals. Additionally, the formation of most tissues requires the interaction of several cell types. Indeed, both extracellular matrix (ECM) components and cellular components are necessary for three-dimensional (3-D) tissue formationin vitro. Using 3-D cultures we demonstrate that ECM arranged in an aligned fashion is necessary for the rod-shaped phenotype of the myocyte, and once this pattern is established, the myocytes were responsible for the alignment of any subsequent cell layers. This is analogous to thein vivopattern that is observed, where there appears to be minimal ECM signaling, rather formation of multicellular patterns is dependent upon cell–cell interactions. Our 3-D culture of myocytes and fibroblasts is significant in that it modelsin vivoorganization of cardiac tissue and can be used to investigate interactions between fibroblasts and myocytes. Furthermore, we used rotational cultures to examine cellular interactions. Using these systems, we demonstrate that specific connexins and cadherins are critical for cell–cell interactions. The data presented here document the feasibility of using these systems to investigate cellular interactions during normal growth and injury.


2020 ◽  
Vol 17 (162) ◽  
pp. 20190739
Author(s):  
Kei Sugihara ◽  
Saori Sasaki ◽  
Akiyoshi Uemura ◽  
Satoru Kidoaki ◽  
Takashi Miura

Pericytes (PCs) wrap around endothelial cells (ECs) and perform diverse functions in physiological and pathological processes. Although molecular interactions between ECs and PCs have been extensively studied, the morphological processes at the cellular level and their underlying mechanisms have remained elusive. In this study, using a simple cellular Potts model, we explored the mechanisms for EC wrapping by PCs. Based on the observed in vitro cell wrapping in three-dimensional PC–EC coculture, the model identified four putative contributing factors: preferential adhesion of PCs to the extracellular matrix (ECM), strong cell–cell adhesion, PC surface softness and larger PC size. While cell–cell adhesion can contribute to the prevention of cell segregation and the degree of cell wrapping, it cannot determine the orientation of cell wrapping alone. While atomic force microscopy revealed that PCs have a larger Young’s modulus than ECs, the experimental analyses supported preferential ECM adhesion and size asymmetry. We also formulated the corresponding energy minimization problem and numerically solved this problem for specific cases. These results give biological insights into the role of PC–ECM adhesion in PC coverage. The modelling framework presented here should also be applicable to other cell wrapping phenomena observed in vivo .


2016 ◽  
Vol 13 (123) ◽  
pp. 20160613 ◽  
Author(s):  
Sebastian V. Hadjiantoniou ◽  
David Sean ◽  
Maxime Ignacio ◽  
Michel Godin ◽  
Gary W. Slater ◽  
...  

During embryogenesis, the spherical inner cell mass (ICM) proliferates in the confined environment of a blastocyst. Embryonic stem cells (ESCs) are derived from the ICM, and mimicking embryogenesis in vitro , mouse ESCs (mESCs) are often cultured in hanging droplets. This promotes the formation of a spheroid as the cells sediment and aggregate owing to increased physical confinement and cell–cell interactions. In contrast, mESCs form two-dimensional monolayers on flat substrates and it remains unclear if the difference in organization is owing to a lack of physical confinement or increased cell–substrate versus cell–cell interactions. Employing microfabricated substrates, we demonstrate that a single geometric degree of physical confinement on a surface can also initiate spherogenesis. Experiment and computation reveal that a balance between cell–cell and cell–substrate interactions finely controls the morphology and organization of mESC aggregates. Physical confinement is thus an important regulatory cue in the three-dimensional organization and morphogenesis of developing cells.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Michael N Economo ◽  
Nathan G Clack ◽  
Luke D Lavis ◽  
Charles R Gerfen ◽  
Karel Svoboda ◽  
...  

The structure of axonal arbors controls how signals from individual neurons are routed within the mammalian brain. However, the arbors of very few long-range projection neurons have been reconstructed in their entirety, as axons with diameters as small as 100 nm arborize in target regions dispersed over many millimeters of tissue. We introduce a platform for high-resolution, three-dimensional fluorescence imaging of complete tissue volumes that enables the visualization and reconstruction of long-range axonal arbors. This platform relies on a high-speed two-photon microscope integrated with a tissue vibratome and a suite of computational tools for large-scale image data. We demonstrate the power of this approach by reconstructing the axonal arbors of multiple neurons in the motor cortex across a single mouse brain.


2006 ◽  
Author(s):  
Shuichi Makita ◽  
Yosifumi Nakamura ◽  
Yoshiaki Yasuno ◽  
Takashi Endo ◽  
Masahiro Yamanari ◽  
...  

2018 ◽  
Author(s):  
Shuting Han ◽  
Weijian Yang ◽  
Rafael Yuste

To capture the emergent properties of neural circuits, high-speed volumetric imaging of neural activity at cellular resolution is desirable. But while conventional two-photon calcium imaging is a powerful tool to study population activity in vivo, it is restrained to two-dimensional planes. Expanding it to 3D while maintaining high spatiotemporal resolution appears necessary. Here, we developed a two-photon microscope with dual-color laser excitation that can image neural activity in a 3D volume. We imaged the neuronal activity of primary visual cortex from awake mice, spanning from L2 to L5 with 10 planes, at a rate of 10 vol/sec, and demonstrated volumetric imaging of L1 long-range PFC projections and L2/3 somatas. Using this method, we map visually-evoked neuronal ensembles in 3D, finding a lack of columnar structure in orientation responses and revealing functional correlations between cortical layers which differ from trial to trial and are missed in sequential imaging. We also reveal functional interactions between presynaptic L1 axons and postsynaptic L2/3 neurons. Volumetric two-photon imaging appears an ideal method for functional connectomics of neural circuits.


Sign in / Sign up

Export Citation Format

Share Document