scholarly journals Optical back-action on the photothermal relaxation rate

Optica ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 177
Author(s):  
Jinyong Ma ◽  
Giovanni Guccione ◽  
Ruvi Lecamwasam ◽  
Jiayi Qin ◽  
Geoff T. Campbell ◽  
...  
Keyword(s):  
Reproduction ◽  
2000 ◽  
pp. 311-323 ◽  
Author(s):  
JL Hilton ◽  
GE Sarty ◽  
GP Adams ◽  
RA Pierson

The magnetic resonance images and maps of bovine ovaries acquired at defined phases of follicular development and regression were studied to determine whether magnetic resonance image attributes of the follicular antrum reflect the physiological status of dominant and subordinate ovarian follicles. Ovariectomies were performed at day 3 of wave one, day 6 of wave one, day 1 of wave two and at >/= day 17 after ovulation. The timings of ovariectomies were selected to acquire growing, early static, late static and regressing follicles of the first wave and preovulatory follicles of the ovulatory wave. Pre-selection and subordinate follicles were also available for analysis. Serum samples were taken on the day of ovariectomy and follicular fluid samples were taken after imaging. Numerical pixel value and pixel heterogeneity in a spot representing approximately 95% of the follicular antrum were quantified in T(1)- and T(2)-weighted images. T(1) and T(2) relaxation rates (T(1) and T(2)), proton density, apparent diffusion coefficients and their heterogeneities were determined from the computed magnetic resonance maps. The antra of early atretic dominant follicles showed higher T(2)-weighted mean pixel value (P < 0.008) and heterogeneity (P < 0. 01) and lower T(2) heterogeneity (P < 0.008) than growing follicles. Subordinate follicles in the presence of a preovulatory dominant follicle had higher T(1), T(1) heterogeneity, proton density, proton density heterogeneity, and lower mean pixel value in T(1)-weighted images than subordinate follicles of the anovulatory wave (P < 0.04). T(1) relaxation rate heterogeneity and proton density heterogeneity were positively correlated with follicular fluid oestradiol concentration (r = 0.4 and 0.3; P < 0.04). T(2) relaxation rate heterogeneity was positively correlated with follicular fluid progesterone concentration (r = 0.4; P < 0.008). Quantitative differences in magnetic resonance image attributes of the antrum observed among phases of follicular development and regression coincided with changes in the ability of the dominant follicle to produce steroid hormones and ovulate, and thus were indicative of physiological status and follicular health.


2019 ◽  
Author(s):  
Michelle Gill ◽  
Andrew Hsu ◽  
Arthur G. Palmer, III

<div> <div> <div> <p>The zero- and double-quantum methyl TROSY Hahn-echo and the methyl <sup>1</sup>H-<sup>1</sup>H dipole- dipole cross-correlation nuclear magnetic resonance experiments enable estimation of multiple quantum chemical exchange broadening in methyl groups in proteins. The two relaxation rate constants are established to be linearly dependent using molecular dynamics simulations and empirical analysis of experimental data. This relationship allows chemical exchange broadening to be recognized as an increase in the Hahn-echo relaxation rate constant. The approach is illustrated by analyzing relaxation data collected at three temperatures for <i>E. coli </i>ribonuclease HI and by analyzing relaxation data collected for different cofactor and substrate complexes of <i>E. coli </i>AlkB. </p> </div> </div> </div>


1986 ◽  
Vol 41 (1-2) ◽  
pp. 311-314 ◽  
Author(s):  
Y. M. Seo ◽  
J. Pelzl ◽  
C. Dimitropoulos

The 35Cl NQR frequency and spin-lattice relaxation rate in the compounds A2PbCl6 (A = Cs, Rb, NH4, K) have been investigated in the range 4.2 K to 500 K, and as a function of pressure at room temperature. NQR experiments conducted on (K: NH4)2PbCl6 mixed crystals have been used to complete the NQR-frequency versus temperature diagram of K2PbCl6, revealing two structural transitions at Tc1 ≅ 358 K and at TC2 ≅ 333 K.


2021 ◽  
pp. 089270572199319
Author(s):  
Gustavo B Carvalho

Ternary hybrid composites of Polypropylene (PP)/Short Glass Fibers (GF)/Hollow Glass Beads (HGB) were prepared using untreated and aminosilane-treated HGB, compatibilized with maleated-PP, and with varying total and relative GF/HGB contents. Static/short-term flexural strength properties data revealed, through lower flexural strength values, that the presence of untreated HGB particles induces to fiber-polymer interfacial decoupling at much higher extent than in the presence of aminosilane-treated HGB particles. This phenomenon is also evident when evaluating the data from displacement-controlled three-point bending fatigue tests. Monitored up to 106 cycles, the analyzed hybrid composites presented distinct performance relative to their fatigue stress relaxation rate: the lower the matrix-reinforcements’ interfacial adhesion, more pronounced the stress relaxation rate as a function of the number of fatigue cycles. Dynamic Mechanical Thermal Analysis (DMTA) results could successfully reveal the hybrid composites behavior at the microstructural level when they were submitted to both static flexural test and fatigue, depending on the degree of interfacial interactions between the polymer matrix of PP and the hybrid reinforcements of GF and HGB (with and without aminosilane surface treatment).


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 889
Author(s):  
Akram Touil ◽  
Kevin Weber ◽  
Sebastian Deffner

In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.


P. m. r. relaxation times ( T 1 and T 2 ) have been measured as a function of regain and temperature for water sorbed by lyophilized methaemoglobin. The purpose of the work was to gain information regarding the nature and extent of water binding by the protein molecules. The T 1 results are interpreted in terms of an exchange between the sixth ligand position of the Fe (III) and other adsorption sites on the protein. At high temperatures the relaxation rate at a given regain reaches a limiting value which allows the fraction of ferric ions hydrated to be calculated. Above 16% regain all the Fe (III) is hydrated. At 21 and 35% regains a maximum appears in the relaxation rate at about -46 °C indicating a contribution from a more mobile phase which produces a T 1 minimum at that temperature. The T 2 data are consistent with a model in which the main contribution to the transverse relaxation rate comes from a tightly bound fraction of the water with ω 0 Ƭ c ≫1. The temperature dependence of T 2 exhibits three different regions: ( a ) a low temperature region where lg T 2 ∝ T -1 ; ( b ) an intermediate region with a steeper increase of T 2 with temperature; and ( c ) a high temperature where T 2 levels off.


2021 ◽  
pp. 193229682110238
Author(s):  
Marc B. Taraban ◽  
Yilin Wang ◽  
Katharine T. Briggs ◽  
Yihua Bruce Yu

Background: There is a clear need to transition from batch-level to vial/syringe/pen-level quality control of biologic drugs, such as insulin. This could be achieved only by noninvasive and quantitative inspection technologies that maintain the integrity of the drug product. Methods: Four insulin products for patient self-injection presented as prefilled pens have been noninvasively and quantitatively inspected using the water proton NMR technology. The inspection output is the water proton relaxation rate R2(1H2O), a continuous numerical variable rather than binary pass/fail. Results: Ten pens of each product were inspected. R2(1H2O) displays insignificant variation among the 10 pens of each product, suggesting good insulin content uniformity in the inspected pens. It is also shown that transferring the insulin solution out of and then back into the insulin pen caused significant change in R2(1H2O), presumably due to exposure to O2 in air. Conclusions: Water proton NMR can noninvasively and quantitatively inspect insulin pens. wNMR can confirm product content uniformity, but not absolute content. Its sensitivity to sample transferring provides a way to detect drug product tampering. This opens the possibility of inspecting every pen/vial/syringe by manufacturers and end-users.


Sign in / Sign up

Export Citation Format

Share Document