Liquid Core Optical Fibers in Raman Spectroscopy

1981 ◽  
Vol 35 (4) ◽  
pp. 439-442 ◽  
Author(s):  
Howard B. Ross ◽  
William M. McClain

Raman spectra of samples contained in hollow quartz fibers are compared quantitatively to conventional Raman spectra using identical laser, spectrometer, detector, and scan speed. We find the fiber signal to be enhanced by a factor of 250/m of fiber, in good agreement with calculations based on geometrical optics. A fiber spectrum of 2 mol% trans-stilbene in benzene is good enough to allow essentially perfect solvent subtraction.

1972 ◽  
Vol 26 (6) ◽  
pp. 585-589 ◽  
Author(s):  
G. E. Walrafen ◽  
J. Stone

Intense spontaneous Raman radiation has been obtained from C6H6 and C2CI4 by passing the focused beam from an argon ion laser (4880 Å, 5 to 250 mW) through filled hollow fused quartz optical fibers having core diameters of ∼75 µm and lengths from 10 to 25 meters. Spectral intensifications by factors of ∼102 to 103 compared to conventional sample techniques have been obtained with the fiber optics method. Raman spectra were recorded with a Cary model 81 spectrophotometer by collecting the divergent radiation emitted from the end of the optical fiber at the focus of the “image slicer.” However, the intensification method is general and may be employed with any double or triple monochromator by placing the fiber end near the entrance slit. For C6H6 at least 33 Raman components were observed in the 3300 > A Δ ν̄ > 1650 cm−1 region including shifts due to overtones and combinations, by using a slit-width of 2 cm−1 with a 15 m fiber length and a laser power of ∼130 mW. The Raman spectra from C6H6 were found to be in good agreement with those recently reported by Schrötter and Bofilias. For C2CI4 intense spectra were also obtained using 2 cm−1 slit-widths with fiber lengths of 25 m and power levels to 250 mW. These spectra augment those obtained earlier by Wittek and indicate five newly observed Raman and infrared coincidences that in several cases may result from the breakdown of D2h selection rules. Details of the fiber optics Raman technique are described.


1975 ◽  
Vol 29 (4) ◽  
pp. 337-344 ◽  
Author(s):  
G. E. Walrafen ◽  
J. Stone

The utility of Raman spectroscopy as a means of characterizing the properties of pure and doped fused silica has been investigated. Laser-Raman spectra were obtained by forward scattering from solid optical fibers ∼35 to 85 m in length using 514.5 nm excitation with an “image slicer” and a Cary model 81 instrument. Clad and unclad fibers of fused silica and doped fibers having SiO2-GeO2 and SiO2-GeO2-B2O3 cores were examined. Raman spectra were also obtained from bulk samples of glasses, including pure GeO2, pure B2O3, and various compositions of SiO2-GeO2, SiO2-B2O3, and SiO2-GeO2-B2O3. The addition of dopants to fused silica was found to alter the Raman spectrum both by the appearance of new bands, roughly proportional to dopant concentration and not common either to the fused silica or to the dopant alone, and by the marked alteration of other Raman bands, which is indicative of changes in the local intermolecular order. Thus, addition of GeO2 produces new Raman bands at ∼675 and ∼1000 cm−1; and of B2O3, new bands at ∼940 and ∼1350 cm−1. Addition of GeO2 and/or B2O3 weakens the relatively sharp Raman lines near 485 and 600 cm−1 (and a similar but small effect was also noted with increasing OH content). GeO2 and B2O3 together also produce observable narrowing of the broad intense 440 cm−1 Raman contour. These spectral effects are interpreted, respectively, in terms of a decrease in the concentrations of [Formula: see text] and [Formula: see text] defects produced by dopant addition and of a concomitant reordering of the silica structure. Raman spectroscopy thus appears to be a useful optical technique for elucidating the properties of dopants that have been especially chosen for good optical transmission and hence are not easily detectable by absorption measurements.


2009 ◽  
Vol 63 (3) ◽  
pp. 217-220
Author(s):  
Jelena Todorovic ◽  
Dejan Djokic ◽  
Zorana Dohcevic-Mitrovic ◽  
Dragan Mihailovic ◽  
Zoran Popovic

The thermostability (phase stability) of Mo6S3I6 nanowires was investigated by Raman spectroscopy, varying the incident laser power (1-9 mW) or by gradual heating of the sample from room temperature to 600?C. We have noticed 18 Raman modes in the room temperature Raman spectra, which is in good agreement with the factor group analysis prediction for P1 space group. We confirmed that the vibrations of Mo6S8 clusters dominate in vibrational properties of the Mo6S3I6 nanostructure, since nanowires Raman spectra are similar to Chevrel phase Raman spectra. During the temperature treatment, it was established that in the temperature range between 300 and 400?C a new Raman mode appeares. This mode can be ascribed to molybdenum oxide (MoO3). With further temperature increase, the intensity of this mode increases, drawing a conclusion that at temperature above 300?C the phase separation takes place in this system followed by a formation of oxide layer.


Author(s):  
Jay Anderson ◽  
Mustafa Kansiz ◽  
Michael Lo ◽  
Curtis Marcott

Abstract Failure analysis of organics at the microscopic scale is an increasingly important requirement, with traditional analytical tools such as FTIR and Raman microscopy, having significant limitations in either spatial resolution or data quality. We introduce here a new method of obtaining Infrared microspectroscopic information, at the submicron level in reflection (far-field) mode, called Optical-Photothermal Infrared (O-PTIR) spectroscopy, that can also generate simultaneous Raman spectra, from the same spot, at the same time and with the same spatial resolution. This novel combination of these two correlative techniques can be considered to be complimentary and confirmatory, in which the IR confirms the Raman result and vice-versa, to yield more accurate and therefore more confident organic unknowns analysis.


1994 ◽  
Vol 48 (7) ◽  
pp. 875-883 ◽  
Author(s):  
Daniel R. Lombardi ◽  
Chao Wang ◽  
Bin Sun ◽  
Augustus W. Fountain ◽  
Thomas J. Vickers ◽  
...  

Raman spectra have been measured for a number of nitrates, nitrites, sulfates, ferrocyanides, and ferricyanides, both in the solid phase and in aqueous solution. Accurate locations of peak maxima are given. Limits of detection for some of the compounds are given for solutions and for solid mixtures in NaNO3. Preliminary measurements have been made on core material recovered from the storage tanks on the Hanford site in Richland, Washington. Representative spectra are presented, showing that it is possible to observe responses of individual components from measurements made directly on untreated cores, with the use of a fiberoptic sampling probe.


2021 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Vittorio Scardaci ◽  
Giuseppe Compagnini

Laser scribing has been proposed as a fast and easy tool to reduce graphene oxide (GO) for a wide range of applications. Here, we investigate laser reduction of GO under a range of processing and material parameters, such as laser scan speed, number of laser passes, and material coverage. We use Raman spectroscopy for the characterization of the obtained materials. We demonstrate that laser scan speed is the most influential parameter, as a slower scan speed yields poor GO reduction. The number of laser passes is influential where the material coverage is higher, producing a significant improvement of GO reduction on a second pass. Material coverage is the least influential parameter, as it affects GO reduction only under restricted conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siti Norbaini Sabtu ◽  
S. F. Abdul Sani ◽  
L. M. Looi ◽  
S. F. Chiew ◽  
Dharini Pathmanathan ◽  
...  

AbstractThe epithelial-mesenchymal transition (EMT) is a crucial process in cancer progression and metastasis. Study of metabolic changes during the EMT process is important in seeking to understand the biochemical changes associated with cancer progression, not least in scoping for therapeutic strategies aimed at targeting EMT. Due to the potential for high sensitivity and specificity, Raman spectroscopy was used here to study the metabolic changes associated with EMT in human breast cancer tissue. For Raman spectroscopy measurements, tissue from 23 patients were collected, comprising non-lesional, EMT and non-EMT formalin-fixed and paraffin embedded breast cancer samples. Analysis was made in the fingerprint Raman spectra region (600–1800 cm−1) best associated with cancer progression biochemical changes in lipid, protein and nucleic acids. The ANOVA test followed by the Tukey’s multiple comparisons test were conducted to see if there existed differences between non-lesional, EMT and non-EMT breast tissue for Raman spectroscopy measurements. Results revealed that significant differences were evident in terms of intensity between the non-lesional and EMT samples, as well as the EMT and non-EMT samples. Multivariate analysis involving independent component analysis, Principal component analysis and non-negative least square were used to analyse the Raman spectra data. The results show significant differences between EMT and non-EMT cancers in lipid, protein, and nucleic acids. This study demonstrated the capability of Raman spectroscopy supported by multivariate analysis in analysing metabolic changes in EMT breast cancer tissue.


Sign in / Sign up

Export Citation Format

Share Document