scholarly journals Argonaute2 Protein in Rat Spermatogenic Cells Is Localized to Nuage Structures and LAMP2-Positive Vesicles Surrounding Chromatoid Bodies

2016 ◽  
Vol 64 (4) ◽  
pp. 268-279 ◽  
Author(s):  
Yuki Fujii ◽  
Yuko Onohara ◽  
Hideaki Fujita ◽  
Sadaki Yokota
2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Junya Suzuki ◽  
Sadaki Yokota

The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including PRKRA, TRBP, and Dicer. RISC localizes to P-bodies. The nuage of the spermatogenic cells has function similar to the P-bodies. We study whether PRKRA localizes to nuage of spermatogenic cells of rat and mouse. PRKRA localized to four types of nuage structures, including aggregates of 60–90 nm particles, irregularly-shaped perinuclear granules, and intermitochondrial cement of pachytene spermatocytes, and chromatoid bodies of round spermatids. In addition, PRKRA is associated with dense material surrounding tubulobulbar complexes and with the ectoplasmic specialization. The results suggest that PRKRA functions in the nuage as an element of RNA silencing system and plays unknown role in the ectoplasmic specialization and at the tubulobulbar complexes of Sertoli cells attaching the head of late spermatids.


Zygote ◽  
2006 ◽  
Vol 14 (3) ◽  
pp. 231-238 ◽  
Author(s):  
Arkadiy Reunov

SummaryThis report presents data from ultrastructural and morphometric studies on the germinal-body-like structures, nuage, nuage–mitochondrial clusters and chromatoid bodies in 4.5-day embryo cells and spermatogenic cells of the laboratory mouse Mus musculus. In the 4.5-day embryo cells the germinal-body-like structures that, according to previous data, arise by condensation of mitochondria in Graafian oocytes, were found not to undergo any ultrastructural alterations. In spermatogonia the germinal-body-like structures presumably were transformed into nuage that functioned as ‘intermitochondrial cement’ binding the mitochondrial clusters. In primary spermatocytes mitochondria aggregated by nuage were found with large vacuoles containing membraneous conglomerates that were obviously excreted by organelles into the cytoplasm. The chromatoid bodies that arose in spermatocytes and finally disintegrated in the posterior part of late spermatids seemed not to be implicated in the pathway of the germinal-body-like structure. The dispersion of chromatoid bodies was noted to be accompanied by excretion of membraneous conglomerates by late spermatid mitochondria. The spermatozoa were not found to contain either the germinal-body-like structures or any other germ-plasm-related structures.


Author(s):  
J. Chakraborty ◽  
A. P. Sinha Hikim ◽  
J. S. Jhunjhunwala

Although the presence of annulate lamellae was noted in many cell types, including the rat spermatogenic cells, this structure was never reported in the Sertoli cells of any rodent species. The present report is based on a part of our project on the effect of torsion of the spermatic cord to the contralateral testis. This paper describes for the first time, the fine structural details of the annulate lamellae in the Sertoli cells of damaged testis from guinea pigs.One side of the spermatic cord of each of six Hartly strain adult guinea pigs was surgically twisted (540°) under pentobarbital anesthesia (1). Four months after induction of torsion, animals were sacrificed, testes were excised and processed for the light and electron microscopic investigations. In the damaged testis, the majority of seminiferous tubule contained a layer of Sertoli cells with occasional spermatogonia (Fig. 1). Nuclei of these Sertoli cells were highly pleomorphic and contained small chromatinic clumps adjacent to the inner aspect of the nuclear envelope (Fig. 2).


Zygote ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 160-169 ◽  
Author(s):  
Jie Zhang ◽  
De-Ling Kong ◽  
Bin Xiao ◽  
Hong-Jie Yuan ◽  
Qiao-Qiao Kong ◽  
...  

SummaryStudies have indicated that psychological stress impairs human fertility and that various stressors can induce apoptosis of testicular cells. However, the mechanisms by which psychological stress on males reduces semen quality and stressors induce apoptosis in testicular cells are largely unclear. Using a psychological (restraint) stress mouse model, we tested whether male psychological stress triggers apoptosis of spermatozoa and spermatogenic cells through activating tumour necrosis factor (TNF)-α signalling. Wild-type or TNF-α−/− male mice were restrained for 48 h before examination for apoptosis and expression of TNF-α and TNF receptor 1 (TNFR1) in spermatozoa, epididymis, seminiferous tubules and spermatogenic cells. The results showed that male restraint significantly decreased fertilization rate and mitochondrial membrane potential, while increasing levels of malondialdehyde, active caspase-3, TNF-α and TNFR1 in spermatozoa. Male restraint also increased apoptosis and expression of TNF-α and TNFR1 in caudae epididymides, seminiferous tubules and spermatogenic cells. Sperm quality was also significantly impaired when spermatozoa were recovered 35 days after male restraint. The restraint-induced damage to spermatozoa, epididymis and seminiferous tubules was significantly ameliorated in TNF-α−/− mice. Furthermore, incubation with soluble TNF-α significantly reduced sperm motility and fertilizing potential. Taken together, the results demonstrated that male psychological stress induces apoptosis in spermatozoa and spermatogenic cells through activating the TNF-α system and that the stress-induced apoptosis in spermatogenic cells can be translated into impaired quality in future spermatozoa.


2021 ◽  
Vol 2 (1) ◽  
pp. 100294
Author(s):  
Xianzhong Lau ◽  
Pearly Jean Ai Yong ◽  
Charles Kang Liang Lou ◽  
Prabhakaran Munusamy ◽  
Mahesh Sangrithi

Herpesviridae ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 7 ◽  
Author(s):  
Victor A Naumenko ◽  
Yurii A Tyulenev ◽  
Sergei A Yakovenko ◽  
Lubov' F Kurilo ◽  
Ludmila V Shileyko ◽  
...  

2019 ◽  
Vol 31 (8) ◽  
pp. 1386 ◽  
Author(s):  
Fatma Uysal ◽  
Gokhan Akkoyunlu ◽  
Saffet Ozturk

DNA methylation plays key roles in epigenetic regulation during mammalian spermatogenesis. DNA methyltransferases (DNMTs) function in de novo and maintenance methylation processes by adding a methyl group to the fifth carbon atom of the cytosine residues within cytosine–phosphate–guanine (CpG) and non-CpG dinucleotide sites. Azoospermia is one of the main causes of male infertility, and is classified as obstructive (OA) or non-obstructive (NOA) azoospermia based on histopathological characteristics. The molecular background of NOA is still largely unknown. DNA methylation performed by DNMTs is implicated in the transcriptional regulation of spermatogenesis-related genes. The aim of the present study was to evaluate the cellular localisation and expression levels of the DNMT1, DNMT3A and DNMT3B proteins, as well as global DNA methylation profiles in testicular biopsy samples obtained from men with various types of NOA, including hypospermatogenesis (hyposperm), round spermatid (RS) arrest, spermatocyte (SC) arrest and Sertoli cell-only (SCO) syndrome. In the testicular biopsy samples, DNMT1 expression and global DNA methylation levels decreased gradually from the hyposperm to SCO groups (P<0.05). DNMT3A expression was significantly decreased in the RS arrest, SC arrest and SCO groups compared with the hyposperm group (P<0.05). DNMT3B expression was significantly lower in the RS arrest and SCO groups than in the hyposperm group (P<0.05). Although both DNMT1 and DNMT3A were localised in the cytoplasm and nucleus of the spermatogenic cells, staining for DNMT3B was more intensive in the nucleus of spermatogenic cells. In conclusion, the findings suggest that significant changes in DNMT expression and global DNA methylation levels in spermatogenic cells may contribute to development of male infertility in the NOA groups. Further studies are needed to determine the molecular biological effects of the altered DNMT expression and DNA methylation levels on development of male infertility.


1998 ◽  
Vol 95 ◽  
pp. 213
Author(s):  
C. Bjørge ◽  
A.-K. Olsen ◽  
R. Wiger ◽  
G. Brunborg ◽  
K. Haug ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document