scholarly journals Deriving fine-scale models of human mobility from aggregated origin-destination flow data

2021 ◽  
Vol 17 (2) ◽  
pp. e1008588
Author(s):  
Constanze Ciavarella ◽  
Neil M. Ferguson

The spatial dynamics of epidemics are fundamentally affected by patterns of human mobility. Mobile phone call detail records (CDRs) are a rich source of mobility data, and allow semi-mechanistic models of movement to be parameterised even for resource-poor settings. While the gravity model typically reproduces human movement reasonably well at the administrative level spatial scale, past studies suggest that parameter estimates vary with the level of spatial discretisation at which models are fitted. Given that privacy concerns usually preclude public release of very fine-scale movement data, such variation would be problematic for individual-based simulations of epidemic spread parametrised at a fine spatial scale. We therefore present new methods to fit fine-scale mathematical mobility models (here we implement variants of the gravity and radiation models) to spatially aggregated movement data and investigate how model parameter estimates vary with spatial resolution. We use gridded population data at 1km resolution to derive population counts at different spatial scales (down to ∼ 5km grids) and implement mobility models at each scale. Parameters are estimated from administrative-level flow data between overnight locations in Kenya and Namibia derived from CDRs: where the model spatial resolution exceeds that of the mobility data, we compare the flow data between a particular origin and destination with the sum of all model flows between cells that lie within those particular origin and destination administrative units. Clear evidence of over-dispersion supports the use of negative binomial instead of Poisson likelihood for count data with high values. Radiation models use fewer parameters than the gravity model and better predict trips between overnight locations for both considered countries. Results show that estimates for some parameters change between countries and with spatial resolution and highlight how imperfect flow data and spatial population distribution can influence model fit.

2021 ◽  
Author(s):  
Tanjona Ramiadantsoa ◽  
C. Jessica E. Metcalf ◽  
Antso Hasina Raherinandrasana ◽  
Santatra Randrianarisoa ◽  
Benjamin L. Rice ◽  
...  

For emerging epidemics such as the COVID-19 pandemic, quantifying travel is a key component of developing accurate predictive models of disease spread to inform public health planning. However, in many LMICs, traditional data sets on travel such as commuting surveys as well as non-traditional sources such as mobile phone data are lacking, or, where available, have only rarely been leveraged by the public health community. Evaluating the accuracy of available data to measure transmission-relevant travel may be further hampered by limited reporting of suspected and laboratory confirmed infections. Here, we leverage case data collected as part of a COVID-19 dashboard collated via daily reports from the Malagasy authorities on reported cases of SARS-CoV-2 across the 22 regions of Madagascar. We compare the order of the timing of when cases were reported with predictions from a SARS-CoV-2 metapopulation model of Madagascar informed using various measures of connectivity including a gravity model based on different measures of distance, Internal Migration Flow data, and mobile phone data. Overall, the models based on mobile phone connectivity and the gravity-based on Euclidean distance best predicted the observed spread. The ranks of the regions most remote from the capital were more difficult to predict but interestingly, regions where the mobile phone connectivity model was more accurate differed from those where the gravity model was most accurate. This suggests that there may be additional features of mobility or connectivity that were consistently underestimated using all approaches, but are epidemiologically relevant. This work highlights the importance of data availability and strengthening collaboration among different institutions with access to critical data - models are only as good as the data that they use, so building towards effective data-sharing pipelines is essential.


Healthcare ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1224
Author(s):  
Zhengyan Li ◽  
Huichun Li ◽  
Xue Zhang ◽  
Chengli Zhao

Human mobility data are indispensable in modeling large-scale epidemics, especially in predicting the spatial spread of diseases and in evaluating spatial heterogeneity intervention strategies. However, statistical data that can accurately describe large-scale population migration are often difficult to obtain. We propose an algorithm model based on the network science approach, which estimates the travel flow data in mainland China by transforming location big data and airline operation data into network structure information. In addition, we established a simplified deterministic SEIR (Susceptible-Exposed-Infectious-Recovered)-metapopulation model to verify the effectiveness of the estimated travel flow data in the study of predicting epidemic spread. The results show that individual travel distance in mainland China is mainly within 100 km. There is far more travel between prefectures within the same province than across provinces. The epidemic spatial spread model incorporating estimated travel data accurately predicts the spread of COVID-19 in mainland China. The results suggest that there are far more travelers than usual during the Spring Festival in mainland China, and the number of travelers from Wuhan mainly determines the number of confirmed cases of COVID-19 in each prefecture.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Frank Schlosser ◽  
Dirk Brockmann

AbstractFinding the origin location of an infectious disease outbreak quickly is crucial in mitigating its further dissemination. Current methods to identify outbreak locations early on rely on interviewing affected individuals and correlating their movements, which is a manual, time-consuming, and error-prone process. Other methods such as contact tracing, genomic sequencing or theoretical models of epidemic spread offer help, but they are not applicable at the onset of an outbreak as they require highly processed information or established transmission chains. Digital data sources such as mobile phones offer new ways to find outbreak sources in an automated way. Here, we propose a novel method to determine outbreak origins from geolocated movement data of individuals affected by the outbreak. Our algorithm scans movement trajectories for shared locations and identifies the outbreak origin as the most dominant among them. We test the method using various empirical and synthetic datasets, and demonstrate that it is able to single out the true outbreak location with high accuracy, requiring only data of $N=4$ N = 4 individuals. The method can be applied to scenarios with multiple outbreak locations, and is even able to estimate the number of outbreak sources if unknown, while being robust to noise. Our method is the first to offer a reliable, accurate out-of-the-box approach to identify outbreak locations in the initial phase of an outbreak. It can be easily and quickly applied in a crisis situation, improving on previous manual approaches. The method is not only applicable in the context of disease outbreaks, but can be used to find shared locations in movement data in other contexts as well.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng-Chun Chang ◽  
Rebecca Kahn ◽  
Yu-An Li ◽  
Cheng-Sheng Lee ◽  
Caroline O. Buckee ◽  
...  

Abstract Background As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. Methods In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. Results We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. Conclusions To prepare for the potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaobin Wang ◽  
Yun Tong ◽  
Yupeng Fan ◽  
Haimeng Liu ◽  
Jun Wu ◽  
...  

AbstractSince spring 2020, the human world seems to be exceptionally silent due to mobility reduction caused by the COVID-19 pandemic. To better measure the real-time decline of human mobility and changes in socio-economic activities in a timely manner, we constructed a silent index (SI) based on Google’s mobility data. We systematically investigated the relations between SI, new COVID-19 cases, government policy, and the level of economic development. Results showed a drastic impact of the COVID-19 pandemic on increasing SI. The impact of COVID-19 on human mobility varied significantly by country and place. Bi-directional dynamic relationships between SI and the new COVID-19 cases were detected, with a lagging period of one to two weeks. The travel restriction and social policies could immediately affect SI in one week; however, could not effectively sustain in the long run. SI may reflect the disturbing impact of disasters or catastrophic events on the activities related to the global or national economy. Underdeveloped countries are more affected by the COVID-19 pandemic.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Enrique Hernández-Orallo ◽  
Antonio Armero-Martínez

One of the key factors for the spreading of human infections, such as the COVID-19, is human mobility. There is a huge background of human mobility models developed with the aim of evaluating the performance of mobile computer networks, such as cellular networks, opportunistic networks, etc. In this paper, we propose the use of these models for evaluating the temporal and spatial risk of transmission of the COVID-19 disease. First, we study both pure synthetic model and simulated models based on pedestrian simulators, generated for real urban scenarios such as a square and a subway station. In order to evaluate the risk, two different risks of exposure are defined. The results show that we can obtain not only the temporal risk but also a heat map with the exposure risk in the evaluated scenario. This is particularly interesting for public spaces, where health authorities could make effective risk management plans to reduce the risk of transmission.


Author(s):  
Shuhei Nomura ◽  
Yuta Tanoue ◽  
Daisuke Yoneoka ◽  
Stuart Gilmour ◽  
Takayuki Kawashima ◽  
...  

AbstractIn the COVID-19 era, movement restrictions are crucial to slow virus transmission and have been implemented in most parts of the world, including Japan. To find new insights on human mobility and movement restrictions encouraged (but not forced) by the emergency declaration in Japan, we analyzed mobility data at 35 major stations and downtown areas in Japan—each defined as an area overlaid by several 125-meter grids—from September 1, 2019 to March 19, 2021. Data on the total number of unique individuals per hour passing through each area were obtained from Yahoo Japan Corporation (i.e., more than 13,500 data points for each area). We examined the temporal trend in the ratio of the rolling seven-day daily average of the total population to a baseline on January 16, 2020, by ten-year age groups in five time frames. We demonstrated that the degree and trend of mobility decline after the declaration of a state of emergency varies across age groups and even at the subregional level. We demonstrated that monitoring dynamic geographic and temporal mobility information stratified by detailed population characteristics can help guide not only exit strategies from an ongoing emergency declaration, but also initial response strategies before the next possible resurgence. Combining such detailed data with data on vaccination coverage and COVID-19 incidence (including the status of the health care delivery system) can help governments and local authorities develop community-specific mobility restriction policies. This could include strengthening incentives to stay home and raising awareness of cognitive errors that weaken people's resolve to refrain from nonessential movement.


Sign in / Sign up

Export Citation Format

Share Document