scholarly journals Quantifying dose-, strain-, and tissue-specific kinetics of parainfluenza virus infection

2021 ◽  
Vol 17 (8) ◽  
pp. e1009299
Author(s):  
Lubna Pinky ◽  
Crystal W. Burke ◽  
Charles J. Russell ◽  
Amber M. Smith

Human parainfluenza viruses (HPIVs) are a leading cause of acute respiratory infection hospitalization in children, yet little is known about how dose, strain, tissue tropism, and individual heterogeneity affects the processes driving growth and clearance kinetics. Longitudinal measurements are possible by using reporter Sendai viruses, the murine counterpart of HPIV 1, that express luciferase, where the insertion location yields a wild-type (rSeV-luc(M-F*)) or attenuated (rSeV-luc(P-M)) phenotype. Bioluminescence from individual animals suggests that there is a rapid increase in expression followed by a peak, biphasic clearance, and resolution. However, these kinetics vary between individuals and with dose, strain, and whether the infection was initiated in the upper and/or lower respiratory tract. To quantify the differences, we translated the bioluminescence measurements from the nasopharynx, trachea, and lung into viral loads and used a mathematical model together a nonlinear mixed effects approach to define the mechanisms distinguishing each scenario. The results confirmed a higher rate of virus production with the rSeV-luc(M-F*) virus compared to its attenuated counterpart, and suggested that low doses result in disproportionately fewer infected cells. The analyses indicated faster infectivity and infected cell clearance rates in the lung and that higher viral doses, and concomitantly higher infected cell numbers, resulted in more rapid clearance. This parameter was also highly variable amongst individuals, which was particularly evident during infection in the lung. These critical differences provide important insight into distinct HPIV dynamics, and show how bioluminescence data can be combined with quantitative analyses to dissect host-, virus-, and dose-dependent effects.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Margaret A Myers ◽  
Amanda P Smith ◽  
Lindey C Lane ◽  
David J Moquin ◽  
Rosemary Aogo ◽  
...  

Influenza viruses cause a significant amount of morbidity and mortality. Understanding host immune control efficacy and how different factors influence lung injury and disease severity are critical. We established and validated dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, inflammation, and disease severity using an integrative mathematical model-experiment exchange. Our results showed that the dynamics of inflammation and virus-inflicted lung injury are distinct and nonlinearly related to disease severity, and that these two pathologic measurements can be independently predicted using the model-derived infected cell dynamics. Our findings further indicated that the relative CD8+ T cell dynamics paralleled the percent of the lung that had resolved with the rate of CD8+ T cell-mediated clearance rapidly accelerating by over 48,000 times in 2 days. This complimented our analyses showing a negative correlation between the efficacy of innate and adaptive immune-mediated infected cell clearance, and that infection duration was driven by CD8+ T cell magnitude rather than efficacy and could be significantly prolonged if the ratio of CD8+ T cells to infected cells was sufficiently low. These links between important pathogen kinetics and host pathology enhance our ability to forecast disease progression, potential complications, and therapeutic efficacy.


Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 255 ◽  
Author(s):  
Olga Shcherbatova ◽  
Dmitry Grebennikov ◽  
Igor Sazonov ◽  
Andreas Meyerhans ◽  
Gennady Bocharov

There are many studies that model the within-host population dynamics of Human Immunodeficiency Virus Type 1 (HIV-1) infection. However, the within-infected-cell replication of HIV-1 remains to be not comprehensively addressed. There exist rather few quantitative models describing the regulation of the HIV-1 life cycle at the intracellular level. In treatment of HIV-1 infection, there remain issues related to side-effects and drug-resistance that require further search “...for new and better drugs, ideally targeting multiple independent steps in the HIV-1 replication cycle” (as highlighted recently by Tedbury & Freed, The Future of HIV-1 Therapeutics, 2015). High-resolution mathematical models of HIV-1 growth in infected cells provide an additional analytical tool in identifying novel drug targets. We formulate a high-dimensional model describing the biochemical reactions underlying the replication of HIV-1 in target cells. The model considers a nonlinear regulation of the transcription of HIV-1 mediated by Tat and the Rev-dependent transport of fully spliced and singly spliced transcripts from the nucleus to the cytoplasm. The model is calibrated using available information on the kinetics of various stages of HIV-1 replication. The sensitivity analysis of the model is performed to rank the biochemical processes of HIV-1 replication with respect to their impact on the net production of virions by one actively infected cell. The ranking of the sensitivity factors provides a quantitative basis for identifying novel targets for antiviral therapy. Our analysis suggests that HIV-1 assembly depending on Gag and Tat-Rev regulation of transcription and mRNA distribution present two most critical stages in HIV-1 replication that can be targeted to effectively control virus production. These processes are not covered by current antiretroviral treatments.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Collin Kieffer ◽  
Mark S Ladinsky ◽  
Allen Ninh ◽  
Rachel P Galimidi ◽  
Pamela J Bjorkman

Dissemination of HIV-1 throughout lymphoid tissues leads to systemic virus spread following infection. We combined tissue clearing, 3D-immunofluorescence, and electron tomography (ET) to longitudinally assess early HIV-1 spread in lymphoid tissues in humanized mice. Immunofluorescence revealed peak infection density in gut at 10–12 days post-infection when blood viral loads were low. Human CD4+ T-cells and HIV-1–infected cells localized predominantly to crypts and the lower third of intestinal villi. Free virions and infected cells were not readily detectable by ET at 5-days post-infection, whereas HIV-1–infected cells surrounded by pools of free virions were present in ~10% of intestinal crypts by 10–12 days. ET of spleen revealed thousands of virions released by individual cells and discreet cytoplasmic densities near sites of prolific virus production. These studies highlight the importance of multiscale imaging of HIV-1–infected tissues and are adaptable to other animal models and human patient samples.


Author(s):  
W. G. Banfield ◽  
G. Kasnic ◽  
J. H. Blackwell

An ultrastructural study of the intestinal epithelium of mice infected with the agent of epizootic diarrhea of infant mice (EDIM virus) was first performed by Adams and Kraft. We have extended their observations and have found developmental forms of the virus and associated structures not reported by them.Three-day-old NLM strain mice were infected with EDIM virus and killed 48 to 168 hours later. Specimens of bowel were fixed in glutaraldehyde, post fixed in osmium tetroxide and embedded in epon. Sections were stained with uranyl magnesium acetate followed by lead citrate and examined in an updated RCA EMU-3F electron microscope.The cells containing virus particles (infected) are at the tips of the villi and occur throughout the intestine from duodenum through colon. All developmental forms of the virus are present from 48 to 168 hours after infection. Figure 1 is of cells without virus particles and figure 2 is of an infected cell. The nucleus and cytoplasm of the infected cells appear clearer than the cells without virus particles.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 735 ◽  
Author(s):  
Boris Pastorino ◽  
Franck Touret ◽  
Magali Gilles ◽  
Xavier de Lamballerie ◽  
Remi N. Charrel

Standard precautions to minimize the risk of SARS-CoV-2 transmission implies that infected cell cultures and clinical specimens may undergo some sort of inactivation to reduce or abolish infectivity. We evaluated three heat inactivation protocols (56 °C-30 min, 60 °C-60 min and 92 °C-15 min) on SARS-CoV-2 using (i) infected cell culture supernatant, (ii) virus-spiked human sera (iii) and nasopharyngeal samples according to the recommendations of the European norm NF EN 14476-A2. Regardless of the protocol and the type of samples, a 4 Log10 TCID50 reduction was observed. However, samples containing viral loads > 6 Log10 TCID50 were still infectious after 56 °C-30 min and 60 °C-60 min, although infectivity was < 10 TCID50. The protocols 56 °C-30 min and 60 °C-60 min had little influence on the RNA copies detection, whereas 92 °C-15 min drastically reduced the limit of detection, which suggests that this protocol should be avoided for inactivation ahead of molecular diagnostics. Lastly, 56 °C-30 min treatment of serum specimens had a negligible influence on the results of IgG detection using a commercial ELISA test, whereas a drastic decrease in neutralizing titers was observed.


2007 ◽  
Vol 88 (10) ◽  
pp. 2627-2635 ◽  
Author(s):  
Alexey A. Matskevich ◽  
Karin Moelling

In mammals the interferon (IFN) system is a central innate antiviral defence mechanism, while the involvement of RNA interference (RNAi) in antiviral response against RNA viruses is uncertain. Here, we tested whether RNAi is involved in the antiviral response in mammalian cells. To investigate the role of RNAi in influenza A virus-infected cells in the absence of IFN, we used Vero cells that lack IFN-α and IFN-β genes. Our results demonstrate that knockdown of a key RNAi component, Dicer, led to a modest increase of virus production and accelerated apoptosis of influenza A virus-infected cells. These effects were much weaker in the presence of IFN. The results also show that in both Vero cells and the IFN-producing alveolar epithelial A549 cell line influenza A virus targets Dicer at mRNA and protein levels. Thus, RNAi is involved in antiviral response, and Dicer is important for protection against influenza A virus infection.


2010 ◽  
Vol 84 (24) ◽  
pp. 12832-12840 ◽  
Author(s):  
Yuan He ◽  
Ke Xu ◽  
Bjoern Keiner ◽  
Jianfang Zhou ◽  
Volker Czudai ◽  
...  

ABSTRACT Many viruses interact with the host cell division cycle to favor their own growth. In this study, we examined the ability of influenza A virus to manipulate cell cycle progression. Our results show that influenza A virus A/WSN/33 (H1N1) replication results in G0/G1-phase accumulation of infected cells and that this accumulation is caused by the prevention of cell cycle entry from G0/G1 phase into S phase. Consistent with the G0/G1-phase accumulation, the amount of hyperphosphorylated retinoblastoma protein, a necessary active form for cell cycle progression through late G1 into S phase, decreased after infection with A/WSN/33 (H1N1) virus. In addition, other key molecules in the regulation of the cell cycle, such as p21, cyclin E, and cyclin D1, were also changed and showed a pattern of G0/G1-phase cell cycle arrest. It is interesting that increased viral protein expression and progeny virus production in cells synchronized in the G0/G1 phase were observed compared to those in either unsynchronized cells or cells synchronized in the G2/M phase. G0/G1-phase cell cycle arrest is likely a common strategy, since the effect was also observed in other strains, such as H3N2, H9N2, PR8 H1N1, and pandemic swine H1N1 viruses. These findings, in all, suggest that influenza A virus may provide favorable conditions for viral protein accumulation and virus production by inducing a G0/G1-phase cell cycle arrest in infected cells.


1962 ◽  
Vol 12 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Richard M. Franklin

A correlation of cytochemical changes with virus production has been studied in L cells infected with Mengovirus. After a latent period of about 2 hours, virus was produced rapidly, reaching maximum titers of up to 12,000 particles per cell in 6 to 8 hours. The earliest cytological change was in the nucleus and consisted of a slight condensation of chromatin. There is no evidence, however, for the multiplication of either the viral RNA or protein in the nucleus. RNA, of high molecular weight, accumulated in the perinuclear area of the cytoplasm and was later found in inclusions. The perinuclear RNA was digestible with RNase and may be located in or on ribosomes. The inclusion RNA was resistant to RNase but could be removed by pepsin or potassium permanganate; it is probably in completed virus particles. Viral antigen was first observed in a perinuclear location and later in the above-mentioned inclusions. Although the viral protein contains appreciable amounts of arginine and lysine, it is not a basic protein of the histone type. Phase-contrast microscopy of living cells clearly demonstrated the role of the inclusions in release of virus from infected cells. A comparison is made between these cytological changes in Mengo-infected cells and those which have been found by other workers in polio-infected cells. There are many very similar changes.


2008 ◽  
Vol 89 (8) ◽  
pp. 1873-1880 ◽  
Author(s):  
Qian Yu ◽  
Tiehao Lin ◽  
Guozhong Feng ◽  
Kai Yang ◽  
Yi Pang

A homology search of a public database revealed that Spodoptera litura nucleopolyhedrovirus (SpltNPV) possesses two putative, antiapoptotic genes, p49 and inhibitor of apoptosis 4 (iap4), but their function has not been investigated in its native host cells. In the present study, we used RNA interference (RNAi) to silence the expression of Splt-iap4 and Splt-p49, independently or together, to determine their roles during the SpltNPV life cycle. RT-PCR analysis and Western blot analysis showed the target gene expression had been knocked out in the SpltNPV-infected SpLi-221 cells after treatment with Splt-p49 or Splt-iap4 double-stranded RNA (dsRNA), respectively, confirming that the two genes were effectively silenced. In SpltNPV-infected cells treated with Splt-p49 dsRNA, apoptosis was observed beginning at 14 h, and almost all cells had undergone apoptosis by 48 h. In contrast, budded virus production and polyhedra formation progressed normally in infected cells treated with Splt-iap4 dsRNA. Cell viability analysis showed that Splt-IAP4 had no synergistic effect on the inhibition of apoptosis of SpLi-221 cells induced by SpltNPV infection. Interestingly, after Splt-iap4 dsRNA treatment, cells did not congregate like those infected with SpltNPV in the early infection phase, implying an unknown role of baculovirus iap4. Our results determine that Splt-p49 is necessary to prevent apoptosis; however, Splt-iap4 has no antiapoptotic function during SpltNPV infection.


2008 ◽  
Vol 89 (11) ◽  
pp. 2651-2661 ◽  
Author(s):  
Hua Wang ◽  
Carol D. Blair ◽  
Ken E. Olson ◽  
Rollie J. Clem

Sindbis virus (SINV) is a mosquito-borne virus in the genus Alphavirus, family Togaviridae. Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected with alphaviruses or flaviviruses. Given that apoptosis has been shown to be an antiviral response in other systems, we have constructed recombinant SINVs that express either pro-apoptotic or anti-apoptotic genes in order to test the effects of inducing or inhibiting apoptosis on SINV replication in mosquito cells. Recombinant SINVs expressing the pro-apoptotic genes reaper (rpr) from Drosophila or michelob_x (mx) from Aedes aegypti caused extensive apoptosis in cells from the mosquito cell line C6/36, thus changing the normal persistent infection observed with SINV to a lytic infection. Although the infected cells underwent apoptosis, high levels of virus replication were still observed during the initial infection. However, virus production subsequently decreased compared with persistently infected cells, which continued to produce high levels of virus over the next several days. Infection of C6/36 cells with SINV expressing the baculovirus caspase inhibitor P35 inhibited actinomycin D-induced caspase activity and protected infected cells from actinomycin D-induced apoptosis, but had no observable effect on virus replication. This study is the first to test directly whether inducing or inhibiting apoptosis affects arbovirus replication in mosquito cells.


Sign in / Sign up

Export Citation Format

Share Document