scholarly journals Analysis of 11,430 recombinant protein production experiments reveals that protein yield is tunable by synonymous codon changes of translation initiation sites

2021 ◽  
Vol 17 (10) ◽  
pp. e1009461
Author(s):  
Bikash K. Bhandari ◽  
Chun Shen Lim ◽  
Daniela M. Remus ◽  
Augustine Chen ◽  
Craig van Dolleweerd ◽  
...  

Recombinant protein production is a key process in generating proteins of interest in the pharmaceutical industry and biomedical research. However, about 50% of recombinant proteins fail to be expressed in a variety of host cells. Here we show that the accessibility of translation initiation sites modelled using the mRNA base-unpairing across the Boltzmann’s ensemble significantly outperforms alternative features. This approach accurately predicts the successes or failures of expression experiments, which utilised Escherichia coli cells to express 11,430 recombinant proteins from over 189 diverse species. On this basis, we develop TIsigner that uses simulated annealing to modify up to the first nine codons of mRNAs with synonymous substitutions. We show that accessibility captures the key propensity beyond the target region (initiation sites in this case), as a modest number of synonymous changes is sufficient to tune the recombinant protein expression levels. We build a stochastic simulation model and show that higher accessibility leads to higher protein production and slower cell growth, supporting the idea of protein cost, where cell growth is constrained by protein circuits during overexpression.

2021 ◽  
Vol 12 ◽  
Author(s):  
Gema Lozano Terol ◽  
Julia Gallego-Jara ◽  
Rosa Alba Sola Martínez ◽  
Adrián Martínez Vivancos ◽  
Manuel Cánovas Díaz ◽  
...  

Recombinant protein production for medical, academic, or industrial applications is essential for our current life. Recombinant proteins are obtained mainly through microbial fermentation, with Escherichia coli being the host most used. In spite of that, some problems are associated with the production of recombinant proteins in E. coli, such as the formation of inclusion bodies, the metabolic burden, or the inefficient translocation/transport system of expressed proteins. Optimizing transcription of heterologous genes is essential to avoid these drawbacks and develop competitive biotechnological processes. Here, expression of YFP reporter protein is evaluated under the control of four promoters of different strength (PT7lac, Ptrc, Ptac, and PBAD) and two different replication origins (high copy number pMB1′ and low copy number p15A). In addition, the study has been carried out with the E. coli BL21 wt and the ackA mutant strain growing in a rich medium with glucose or glycerol as carbon sources. Results showed that metabolic burden associated with transcription and translation of foreign genes involves a decrease in recombinant protein expression. It is necessary to find a balance between plasmid copy number and promoter strength to maximize soluble recombinant protein expression. The results obtained represent an important advance on the most suitable expression system to improve both the quantity and quality of recombinant proteins in bioproduction engineering.


2020 ◽  
Author(s):  
Bikash K. Bhandari ◽  
Chun Shen Lim ◽  
Paul P. Gardner

ABSTRACTPlanning experiments using accurate prediction algorithms could mitigate failures in recombinant protein production. We have developed TISIGNER.com with the aim of addressing the technical challenges in recombinant protein production. We offer two web services, TIsigner (Translation Initiation coding region designer) and SoDoPE (Soluble Domain for Protein Expression), which are specialised in prediction/optimisation of recombinant protein expression and solubility, respectively. Importantly, TIsigner and SoDoPE are linked, which allows users to switch between the tools when optimising their genes of interest.


2019 ◽  
Author(s):  
Bikash K. Bhandari ◽  
Chun Shen Lim ◽  
Paul P. Gardner

AbstractRecombinant protein production in microbial systems is well-established, yet half of these experiments have failed in the expression phase. Failures are expected for ‘difficult-to-express’ proteins, but for others, codon bias, mRNA folding, avoidance, and G+C content have been suggested to explain observed levels of protein expression. However, determining which of these is the strongest predictor is still an active area of research. We used an ensemble average of energy model for RNA to show that the accessibility of translation initiation sites outperforms other features in predicting the outcomes of 11,430 experiments of recombinant protein production in Escherichia coli. We developed TIsigner and showed that synonymous codon changes within the first nine codons are sufficient to improve the accessibility of translation initiation sites. Our software produces scores for both input and optimised sequences, so that success/failure can be predicted and prevented by PCR cloning of optimised sequences.


2019 ◽  
Vol 116 (6) ◽  
pp. 1259-1268 ◽  
Author(s):  
Martin Lemmerer ◽  
Juergen Mairhofer ◽  
Alexander Lepak ◽  
Karin Longus ◽  
Rainer Hahn ◽  
...  

2005 ◽  
Vol 91 (6) ◽  
pp. 722-732 ◽  
Author(s):  
Jullian Jones ◽  
Tarangsri Nivitchanyong ◽  
Christina Giblin ◽  
Valentina Ciccarone ◽  
David Judd ◽  
...  

2021 ◽  
Author(s):  
Veronica Gast ◽  
Kate Campbell ◽  
Cecilia Picazo Campos ◽  
Martin Engqvist ◽  
Verena Siewers ◽  
...  

AbstractRecombinant protein production is a known source of oxidative stress. Knowledge of which ROS are involved or the specific growth phase in which stress occurs however remains lacking. Using modern, hypersensitive genetic H2O2-specific probes, micro-cultivation and continuous measurements in batch culture, we observed H2O2 accumulation during and following the diauxic shift in engineered Saccharomyces cerevisiae, correlating with peak α-amylase production. In agreement with previous studies supporting a role of the translation initiation factor kinase Gcn2 in the response to H2O2, we find Gcn2-dependent phosphorylation of eIF2α to increase alongside translational attenuation in strains engineered to produce large amounts of α-amylase. Gcn2 removal significantly improved α-amylase production in two previously optimized high-producing strains, but not in the wild-type. Gcn2-deficiency furthermore reduced intracellular H2O2 levels and the unfolded protein response whilst expression of antioxidants and the ER disulfide isomerase PDI1 increased. These results suggest protein synthesis and ER oxidative folding to be coupled and subject to feedback inhibition by H2O2.ImportanceReactive oxygen species (ROS) accumulate during recombinant protein production both in yeast and Chinese hamster ovary cells, two of the most popular organisms used in the multi-million dollar protein production industry. Here we document increased H2O2 in the cytosol of yeast cells producing α-amylase. Since H2O2 predominantly targets the protein synthesis machinery and activates the translation initiation factor kinase Gcn2, we removed Gcn2, resulting in increased recombinant α-amylase production in two different previously engineered high-producing protein production strains. Removal of this negative feed-back loop thus represents a complementary strategy for improving recombinant protein production efforts currently used in yeast. Gcn2-deficiency also increased the expression of antioxidant genes and the ER-foldase PDI1, suggesting that protein synthesis and ER oxidative folding are linked and feed-back regulated via H2O2. Identification of additional components in this complex regulation may further improve protein production and contribute to the development of novel protein-based therapeutic strategies.


2012 ◽  
Vol 110 (4) ◽  
pp. 1153-1163 ◽  
Author(s):  
Mathias Contie ◽  
Olivier Leger ◽  
Nicolas Fouque ◽  
Yves Poitevin ◽  
Marie Kosco-Vilbois ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document