scholarly journals Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density

PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009190
Author(s):  
Anna L. Swan ◽  
Christine Schütt ◽  
Jan Rozman ◽  
Maria del Mar Muñiz Moreno ◽  
Stefan Brandmaier ◽  
...  

The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hsing-Fang Lu ◽  
Po-Hsin Chou ◽  
Gan-Hong Lin ◽  
Wan-Hsuan Chou ◽  
Shih-Tien Wang ◽  
...  

Osteoporosis is characterized by decreased bone mineral density and increased risk of fracture. Raloxifene is one of the treatments of osteoporosis. However, the responses were variable among patients. Previous studies revealed that the genetic variants are involved in the regulation of treatment outcomes. To date, studies that evaluate the influence of genes across all genome on the raloxifene treatment response are still limited. In this study, a total of 41 postmenopausal osteoporosis patients under regular raloxifene treatment were included. Gene-based analysis using MAGMA was applied to investigate the genetic association with the bone mineral density response to raloxifene at the lumbar spine or femoral neck site. Results from gene-based analysis indicated several genes (GHRHR, ABHD8, and TMPRSS6) related to the responses of raloxifene. Besides, the pathways of iron ion homeostasis, osteoblast differentiation, and platelet morphogenesis were enriched which implies that these pathways might be relatively susceptible to raloxifene treatment outcome. Our study provided a novel insight into the response to raloxifene.


2019 ◽  
Vol 22 (3) ◽  
pp. 382-390 ◽  
Author(s):  
Ehab I. Mohamed ◽  
Radwa A. Meshref ◽  
Samir M. Abdel-Mageed ◽  
Moustafa H. Moustafa ◽  
Mohamed I. Badawi ◽  
...  

2021 ◽  
Author(s):  
Carolina Medina-Gomez ◽  
Benjamin H. Mullin ◽  
Alessandra Chesi ◽  
Vid Prijatelj ◽  
John P. Kemp ◽  
...  

Skull bone mineral density (SK-BMD) provides a suitable trait for the discovery of genes important to bone biology in general, and particularly for identifying components unique to intramembranous ossification, which cannot be captured at other skeletal sites. We assessed genetic determinants of SK-BMD in 43,800 individuals, identifying 59 genome-wide significant loci (4 novel), explaining 12.5% of its variance. Pathway and enrichment analyses of the association signals resulted in clustering within gene-sets involved in regulating the development of the skeleton; overexpressed in the musculoskeletal system; and enriched in enhancer and transcribed regions in osteoblasts. From the four novel loci (mapping to ZIC1, PRKAR1A, ATP6V1C1, GLRX3), two (ZIC1 and PRKAR1A) have previously been related to craniofacial developmental defects. Functional validation of skull development in zebrafish revealed abnormal cranial bone initiation that culminated in ectopic sutures and reduced BMD in mutated zic1 and atp6v1c1 fish and asymmetric bone growth and elevated BMD in mutated prkar1a fish. We confirmed a role of ZIC1 loss-of-function in suture patterning and discovered ATP6V1C1 gene associated with suture development. In light of the evidence presented suggesting that SK-BMD is genetically related to craniofacial abnormalities, our study opens new avenues to the understanding of the pathophysiology of craniofacial defects and towards the effective pharmacological treatment of bone diseases.


2001 ◽  
Vol 120 (5) ◽  
pp. A564-A564
Author(s):  
K ISLAM ◽  
S CREECH ◽  
R SOKHI ◽  
R KONDAVEETI ◽  
A NADIR ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 41-42
Author(s):  
Anna Orsola ◽  
Jacques Planas ◽  
Carlos Salvador ◽  
José M. Abascal ◽  
Enrique Trilla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document